Como escrever uma parte específica do algoritmo em ambiente de algoritmo em Latex?

Como escrever uma parte específica do algoritmo em ambiente de algoritmo em Latex?

Como produzir exatamente essa parte da foto? insira a descrição da imagem aqui

O que posso fazer é assim:

\documentclass{article}
 \usepackage{algorithm}
 \usepackage{algpseudocode}
    
 \begin{document}
    
 \begin{algorithm}
\caption{Optimizes a convex combination of $K$ kernels and employs a linear programming solver to iteratively solve the semi-infinite linear optimization problem \eqref{eq:sonnenburg2006large-12}. 
The accuracy parameter $\varepsilon_{M K L}$ is a parameter of the algorithm.
$S_k(\alpha)$ and $c$ are determined by the cost function.
}
\begin{algorithmic}
\State $S^0=1, \theta^1=-\infty, \beta_k^1=\frac{1}{K}$ for $k=1, \ldots, K$
\For{$t=1,2, \ldots$}
\State Compute $\alpha^t=\underset{\alpha \in \mathcal{C}}{\operatorname{argmin}} \sum_{k=1}^K \beta_k^t S_k(\alpha)$ by single kernel algorithm with $\mathbf{k}=\sum_{k=1}^K \beta_k^t \mathbf{k}_k$
\State $S^t=\sum_{k=1}^K \beta_k^t S_k^t$, where $S_k^t=S_k\left(\alpha^t\right)$
\If{$\left|1-\frac{S^t}{\theta^t}\right| \leq \varepsilon_{M K L}$} 
\State \textbf{break}
\EndIf
\State $\left(\beta^{t+1}, \theta^{t+1}\right)=\operatorname{argmax} \theta$
\State \;\;\;w.r.t.
\State \;\;\;s.t. 
\begin{align*}
  \text{w.r.t.} & \quad \beta \in \mathbb{R}^K, \theta \in \mathbb{R} \\
  \text{s.t.} & \quad \mathbf{0} \leq \beta, \quad \sum_{k=1}^K \beta_k=1 \text { and } \sum_{k=1}^K \beta_k S_k^r \geq \theta \text { for } r=1, \ldots, t
\end{align*}
\EndFor
\end{algorithmic}
\end{algorithm}
    
\end{document}

insira a descrição da imagem aqui

Responder1

\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{algorithm}
\usepackage{algpseudocode}
\begin{document}
\begin{algorithm}
\caption{Optimizes a convex combination of $K$ kernels and employs a linear programming solver to iteratively solve the semi-infinite linear optimization problem \eqref{eq:sonnenburg2006large-12}.
The accuracy parameter $\varepsilon_{M K L}$ is a parameter of the algorithm.
$S_k(\alpha)$ and $c$ are determined by the cost function.}
\begin{algorithmic}
\State $S^0=1, \theta^1=-\infty, \beta_k^1=\frac{1}{K}$ for $k=1, \ldots, K$
\For{$t=1,2, \ldots$}
\State Compute $\alpha^t=\underset{\alpha \in \mathcal{C}}{\operatorname{argmin}} \sum_{k=1}^K \beta_k^t S_k(\alpha)$ by single kernel algorithm with $\mathbf{k}=\sum_{k=1}^K \beta_k^t \mathbf{k}_k$
\State $S^t=\sum_{k=1}^K \beta_k^t S_k^t$, where $S_k^t=S_k\left(\alpha^t\right)$
\If{$\left|1-\frac{S^t}{\theta^t}\right| \leq \varepsilon_{M K L}$}
\State \textbf{break}
\EndIf
\State $\left(\beta^{t+1}, \theta^{t+1}\right)=\operatorname{argmax} \theta$
\begin{align*}
\text{w.r.t.} & \quad \beta \in \mathbb{R}^K, \theta \in \mathbb{R} \\
\text{s.t.} & \quad \mathbf{0} \leq \beta, \quad \sum_{k=1}^K \beta_k=1 \text { and } \sum_{k=1}^K \beta_k S_k^r \geq \theta \text { for } r=1, \ldots, t
\end{align*}
\EndFor
\end{algorithmic}
\end{algorithm}
\end{document}

insira a descrição da imagem aqui

informação relacionada