Gostaria de escrever este corolário. Ele contém duas desigualdades, conforme mostrado na imagem a seguir. Eu uso a classe de documento de duas colunas IEEEtran
no verso – atualmente com TeX Live 2022.
A título de ilustração, o resultado esperado é semelhante a este, embora as equações (1) e (2) não pareçam claras.
\documentclass[journal]{IEEEtran}
\usepackage{mathtools}
\usepackage{amsmath}
\begin{document}
\begin{corollary}\label{Corollary:new_seq}
Supposing that $i^{\ast} = argmax_i R_3(i)$ and $i^{\ast\ast} = argmax_i R_4(i)$ for all $i=1,\ldots,n$, if $max (R_3(i),R_4(i)) \geq max(R_5(A^{\prime}),R_6(A^{\prime\prime}))$ in a serial configuration, then the new sequence is optimal when one of the following constraints is fulfilled.
\renewcommand{\labelenumi}{(\roman{enumi})}
\begin{enumerate}
\item
\begin{equation} \label{eq:corollary_i}
max_{i^{\ast} =1,...,n} (q_i^{\ast}\cdot p_i^{\ast} + (1-q_i^{\ast})c_i^{\ast} \quad \forall i^{\ast}\geq(n-1), q_i^{\ast}\cdot c_i^{\ast} + (1-q_i^{\ast})p_i^{\ast} \quad \text{for $i^{\ast} = n$}) \geq (n-1)w + nv
\end{equation}
\item
\begin{equation} \label{eq:corollary_ii}
max_{i^{\ast\ast} =1,...,n} (q_i^{\ast\ast}\cdot p_i^{\ast\ast} + (1-q_i^{\ast\ast})c_i^{\ast\ast} \quad \forall i^{\ast\ast}\geq(n-1), q_i^{\ast\ast}\cdot c_i^{\ast\ast} + (1-q_i^{\ast\ast})p_i^{\ast\ast} \quad \text{for $i^{\ast} = n$}) \geq (n+1)w + (n+2)v
\end{equation}
\end{enumerate}
\end{corollary}
\end{document}
No entanto, ambas as equações (i) e (ii) ultrapassam a coluna da seguinte forma.
Alguém poderia recomendar o que fazer com o código, por favor? Se você tiver outras opções para fazer uma escrita mais caprichada, por favor me avise. Agradeço antecipadamente.
Responder1
Eu não rotularia as desigualdades com um rótulo de enumeração e um rótulo de equação. Como você precisa do rótulo de enumeração de qualquer maneira, eu dispensaria o rótulo da equação. No código abaixo, configurei a enumeração para que os itens possam ser facilmente referenciados.
\documentclass[journal]{IEEEtran}
\usepackage{mathtools}
%\usepackage{amsmath} % amsmath is loaded automatically by mathtools
\DeclareMathOperator{\argmax}{argmax}
\usepackage{amsthm}
\newtheorem{corollary}{Corollary}
\usepackage{newtxmath}
\usepackage{enumitem}
\begin{document}
\begin{corollary}\label{Corollary:new_seq}
Suppose that $i^{\ast} = \argmax_i R_3(i)$ and
$i^{\ast\ast} = \argmax_i R_4(i)$ for $i\in\{1,\dots,n\}$.
If $\max (R_3(i),R_4(i)) \geq \max(R_5(A'),R_6(A''))$
in a serial configuration, then the new sequence is
optimal if one of the following constraints is
ful\-filled.
\begin{enumerate}[label=\textup{C.\roman*)},
ref= C.\roman*,
left=0pt, align=left]
\item \label{item:corollary_i}
\parbox[t]{0.8\columnwidth}{\raggedright$
\max\limits_{i^{\ast} =1,\dots,n}
\bigl\{
q_i^{\ast} p_i^{\ast} + (1-q_i^{\ast})c_i^{\ast}
\textup{ for all $i^{\ast}\leq n-1$},\allowbreak
q_i^{\ast} c_i^{\ast} + (1-q_i^{\ast})p_i^{\ast}
\textup{ for $i^{\ast} = n$}
\bigr\}
\geq (n-1)w + nv$}
\bigskip
\item \label{item:corollary_ii}
\parbox[t]{0.87\columnwidth}{\raggedright$
\max\limits_{i^{\ast\ast} =1,\dots,n}
\bigl\{
q_i^{\ast\ast} p_i^{\ast\ast} + (1-q_i^{\ast\ast}) c_i^{\ast\ast}
\textup{ for all $i^{\ast\ast}\leq n-1$},\allowbreak
q_i^{\ast\ast} c_i^{\ast\ast} + (1-q_i^{\ast\ast})p_i^{\ast\ast}
\textup{ for $i^{\ast} = n$}
\bigr\}
\geq (n+1)w + (n+2)v$}
\end{enumerate}
\end{corollary}
If one of the constraints \ref{item:corollary_i} or
\ref{item:corollary_ii} is fulfilled, \dots
\end{document}