Não foi possível compilar – 2 erros

Não foi possível compilar – 2 erros

Estou tentando compilar o texto abaixo (é uma versão muito reduzida do meu documento original). Está me dando 2 erros:

Erro 1: Erro LaTeX: Algo está errado - talvez um item faltando. (linha 317)

Erro 2: Extra } ou \endgroup esquecido. (linha 372)

\documentclass[journal,draftcls,onecolumn,12pt,twoside]{IEEEtranTCOM}
%
% If IEEEtran.cls has not been installed into the LaTeX system files,
% manually specify the path to it like:
% \documentclass[journal]{../sty/IEEEtran}

\normalsize

\usepackage[noadjust]{cite}




% *** GRAPHICS RELATED PACKAGES ***
%
\ifCLASSINFOpdf
  % \usepackage[pdftex]{graphicx}
  % declare the path(s) where your graphic files are
  % \graphicspath{{../pdf/}{../jpeg/}}
  % and their extensions so you won't have to specify these with
  % every instance of \includegraphics
  % \DeclareGraphicsExtensions{.pdf,.jpeg,.png}
\else
  % or other class option (dvipsone, dvipdf, if not using dvips). graphicx
  % will default to the driver specified in the system graphics.cfg if no
  % driver is specified.
  % \usepackage[dvips]{graphicx}
  % declare the path(s) where your graphic files are
  % \graphicspath{{../eps/}}
  % and their extensions so you won't have to specify these with
  % every instance of \includegraphics
  % \DeclareGraphicsExtensions{.eps}
\fi

% graphicx was written by David Carlisle and Sebastian Rahtz. It is
% required if you want graphics, photos, etc. graphicx.sty is already
% installed on most LaTeX systems. The latest version and documentation can
% be obtained at: 
% http://www.ctan.org/tex-archive/macros/latex/required/graphics/




\usepackage{algorithm}
\usepackage{algpseudocode}

\hyphenation{op-tical net-works semi-conduc-tor}
\raggedbottom

\usepackage{textcomp}
\usepackage{pgfplots}
\usepackage{float}
\usepackage[compact]{titlesec}
\usepackage{relsize}
%\usepackage{interval}
\usepackage{booktabs, longtable, multirow, supertabular, tabularx}
\renewcommand{\arraystretch}{1.5}
    \newcolumntype{P}[1]{>{\centering\hspace{0pt}\arraybackslash}p{#1}}
    \newcolumntype{M}[1]{>{\centering\hspace{0pt}\arraybackslash}m{#1}}
    \newcolumntype{L}{>{\centering\arraybackslash}m{3cm}}
\newcommand{\indep}{\rotatebox[origin=c]{90}{$\models$}}
\usepackage{cite}
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em
    T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
\usepackage{textcomp}
\let\labelindent\relax
\usepackage{enumitem}
\setlist{nolistsep,leftmargin=.6cm}
\usepackage{bbm}
%\usepackage{breqn}
\usepackage{amsmath, amssymb, amsthm}
\usepackage{psfrag}
\usepackage{graphicx}
\usepackage{tikz}
\usetikzlibrary{arrows.meta,
                fit,
                positioning,
                quotes}

\usepackage{cuted}
%\usepackage{soul} %didn't have package _ojas
\usepackage[font=small]{caption}
\usepackage{pbox}
\usepackage{filecontents}
 \newcommand{\ind}{\perp\!\!\!\!\perp}
\begin{document}
\newtheorem{proposition}{Proposition}
\newtheorem{definition}{Definition}
\newtheorem{lemma}{Lemma}
\newtheorem*{theorem*}{Theorem}
\newtheorem{theorem}{Theorem}
\newtheorem{corollary}{Corollary}
\newtheorem{assumption}{Assumption}
\newtheorem{claim}{Claim}
%
% paper title
% can use linebreaks \\ within to get better formatting as desired
\title{abcd efgh ijkl  }
%
%
% author names and IEEE memberships
% note positions of commas and nonbreaking spaces ( ~ ) LaTeX will not break
% a structure at a ~ so this keeps an author's name from being broken across
% two lines.
% use \thanks{} to gain access to the first footnote area
% a separate \thanks must be used for each paragraph as LaTeX2e's \thanks
% was not built to handle multiple paragraphs
%

\author{a~Ro,~\IEEEmembership{asd,~IEEE,}
        f~ip,~\IEEEmembership{g,~IE}% <-this % stops a space
\thanks{asd. }% <-this % stops a space
%This work is partly supported by NSF grant "tobeadded" and NYU WIRELESS Industrial affiliates.
}

% The paper headers
\markboth{IEEE Transactions on Communications}%
{Submitted paper}





% make the title area
\maketitle

\vspace{-1cm}
\begin{abstract}
%\boldmath


\end{abstract}
% IEEEtran.cls defaults to using nonbold math in the Abstract.
% This preserves the distinction between vectors and scalars. However,
% if the journal you are submitting to favors bold math in the abstract,
% then you can use LaTeX's standard command \boldmath at the very start
% of the abstract to achieve this. Many IEEE journals frown on math
% in the abstract anyway.

% Note that keywords are not normally used for peerreview papers.
\begin{IEEEkeywords}

\end{IEEEkeywords}






% For peer review papers, you can put extra information on the cover
% page as needed:
% \ifCLASSOPTIONpeerreview
% \begin{center} \bfseries EDICS Category: 3-BBND \end{center}
% \fi
%
% For peerreview papers, this IEEEtran command inserts a page break and
% creates the second title. It will be ignored for other modes.
\IEEEpeerreviewmaketitle




\section{System model}~\label{sec:sysmodl} 



\subsection{asfgjkfd}

models.  In adaptive GT, the previous test results can be used to design the future tests. In non-adaptive setting, all group tests are designed independent of each other. 
    

 
$\textbf{X}^{i}  \in \{0,\sqrt{P}\}^{n}, \forall i \in \mathcal{D}$. The BS measures received energy during each channel-use and produces a binary 0-1 output $Z_t$ as in  (\ref{threshold}). These 1-bit energy measurements at the receiver side corresponds to the group test results.


framework corresponds to non-adaptive GT since the testing/grouping pattern is based on predefined binary preambles and is not updated based on the GT results of previous channel-uses.
We will observe in Section \ref{sec3} that the GT model can be leveraged to provide an achievability scheme to the minimum user identification cost for the non-coherent $(\ell,k)-$MnAC when $\alpha = 0 $, ie., $k= O(1)$ and a corresponding lower bound when $\alpha \neq 0 $.

    \section{dfhjlu}
    \label{sec3}
    
 em in a point-to-point  vector input - scalar  output  channel whose inputs correspond to the active users as shown in Fig. \ref{fig:redalpha}. Thereafter, we derive the maximum rate of the equivalent channel by exploiting its cascade structure. 
\subsection{Efghk} 
 \vspace{0.05cm}

Considering the channel in Fig. 1, since the set of active users is $\mathcal{A}=\{a_1,\ldots a_k\}$, the input to the non-coherent $(\ell,k)-$MnAC  is $\Tilde{\textbf{X}}=(X^{a_1},\ldots X^{a_k})$.   Thus,  the signal at the input of envelope detector is 
    $ S=\sqrt{P}\sum_{m=1}^{k}h^{a_m} +W.$
 Let $V=\frac{\sum_{i=1}^{k}X^{a_i}}{\sqrt{P}}$ denote the Hamming weight of $\Tilde{\textbf{X}}$ which is the number of active users transmitting `On' signal during the particular  channel-use we have at hand.
Thus, conditioned on $V=v$, $U:=|S|^{2}$ follows an exponential  distribution given by
\begin{equation}
     f_{U|V}(u|v)=\frac{1}{v \sigma^{2}P+\sigma_{w}^{2}} e^{-\frac{u}{v \sigma^{2}P+\sigma_{w}^{2}}}, u \geq 0.
     \label{expdis}
 \end{equation}  As evident from (\ref{threshold}) and (\ref{expdis}), we have $\Tilde{\textbf{X}} \rightarrow V\rightarrow Z$, i.e.,   the transition probability $p\left(z\mid \Tilde{\textbf{x}},v\right)$  is only dependent on the  channel input  $\Tilde{\textbf{X}}=(X^{a_1},X^{a_2},\ldots X^{a_k})$  through its Hamming weight  $V$.  Also,  since $  f_{U|V}$ is an exponential distribution, $p_v:=p\left(Z=0\mid V=v\right)$ can be expressed as
\begin{equation}
p_v=1-e^{-\frac{\gamma}{v \sigma^{2}P+\sigma_{w}^{2}}}. \label{channeleq}
\end{equation} Similarly, $\operatorname{Pr}\left(Z=1\mid V=v\right)=1-p_v.$ Note that $p_v$ is a strictly decreasing function of $v$ where $v \in\{0,1,..,k\}$ assuming  w.l.o.g. positive values for $\sigma^2, \sigma_w^2$ and $\gamma$.

Thus, the non-coherent $(\ell,k)-$MnAC can be equivalently viewed as a traditional point-to-point communication channel whose input is  the active user set as in Fig. \ref{fig:redalpha}. Moreover, this equivalent channel can be modeled as a cascade of two channels; the first channel computes the Hamming weight $V$ of the input $\Tilde{\textbf{X}}$ whereas the second channel translates the Hamming weight $V$ into a binary output $Z$ depending on the fading statistics $(\sigma^2)$, noise variance $(\sigma_w^2)$ of the wireless channel and the non-coherent detector threshold $\gamma$. We exploit this cascade channel structure to establish the minimum user identification cost $n(\ell)$ for the non-coherent $(\ell,k)-$MnAC.

\begin{figure}   
    \centering
    \resizebox{4.5in}{!}{

\tikzset{every picture/.style={line width=1.4pt}} %set default line width to 0.75pt        

\begin{tikzpicture}[x=.9pt,y=.85pt,yscale=-1,xscale=1.1]
%uncomment if require: \path (0,341); %set diagram left start at 0, and has height of 341


%Shape: Rectangle [id:dp43249060131829475] 
\draw   (59.92,86.98) -- (92.32,86.98) -- (92.32,119.45) -- (59.92,119.45) -- cycle ;
%Shape: Rectangle [id:dp028664217117475133] 
\draw   (59.92,131.79) -- (92.32,131.79) -- (92.32,167.63) -- (59.92,167.63) -- cycle ;
%Shape: Rectangle [id:dp24677447546416165] 
\draw   (59.92,221.39) -- (92.32,221.39) -- (92.32,257.23) -- (59.92,257.23) -- cycle ;
%Straight Lines [id:da6482578057588197] 
\draw  [dash pattern={on 1.84pt off 2.51pt}]  (76.25,175.25) -- (76.77,216.83) ;
%Straight Lines [id:da9495314852330665] 
\draw    (92.82,145.23) -- (145.76,145.95) ;
\draw [shift={(147.76,145.97)}, rotate = 180.78] [color={rgb, 255:red, 0; green, 0; blue, 0 }  ][line width=0.75]    (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29)   ;
%Straight Lines [id:da3301990043391969] 
\draw    (91.83,239.31) -- (144.78,240.03) ;
\draw [shift={(146.78,240.06)}, rotate = 180.78] [color={rgb, 255:red, 0; green, 0; blue, 0 }  ][line width=0.75]    (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29)   ;
%Straight Lines [id:da752592611698061] 
\draw    (92.82,107.59) -- (145.76,108.31) ;
\draw [shift={(147.76,108.34)}, rotate = 180.78] [color={rgb, 255:red, 0; green, 0; blue, 0 }  ][line width=0.75]    (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29)   ;
%Shape: Rectangle [id:dp4158459894145996] 
\draw   (155.99,80.56) -- (262.26,80.56) -- (262.26,259.77) -- (155.99,259.77) -- cycle ;
%Straight Lines [id:da13424438634055003] 
\draw    (263.57,96.84) -- (285.26,96.7) ;
\draw [shift={(287.26,96.69)}, rotate = 179.64] [color={rgb, 255:red, 0; green, 0; blue, 0 }  ][line width=0.75]    (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29)   ;
%Straight Lines [id:da3432111888935394] 
\draw    (263.57,116.55) -- (285.26,116.42) ;
\draw [shift={(287.26,116.4)}, rotate = 179.64] [color={rgb, 255:red, 0; green, 0; blue, 0 }  ][line width=0.75]    (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29)   ;
%Straight Lines [id:da19164064738653108] 
\draw    (263.57,250.06) -- (285.26,249.92) ;
\draw [shift={(287.26,249.91)}, rotate = 179.64] [color={rgb, 255:red, 0; green, 0; blue, 0 }  ][line width=0.75]    (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29)   ;
%Straight Lines [id:da9490949605319441] 
\draw  [dash pattern={on 0.84pt off 2.51pt}]  (310.95,137.91) -- (310.95,147.77) -- (310.95,158.52) ;
%Straight Lines [id:da9490949605319441] 
\draw  [dash pattern={on 0.84pt off 2.51pt}]  (280.95,50.91) -- (280.95,248.52) ;
%Shape: Ellipse [id:dp20982408072422865] 
\draw   (468.87,104.91) .. controls (468.87,92.53) and (479.92,82.5) .. (493.55,82.5) .. controls (507.18,82.5) and (518.22,92.53) .. (518.22,104.91) .. controls (518.22,117.28) and (507.18,127.31) .. (493.55,127.31) .. controls (479.92,127.31) and (468.87,117.28) .. (468.87,104.91) -- cycle ;
%Shape: Ellipse [id:dp5362449055680822] 
\draw   (470.85,235.73) .. controls (470.85,223.35) and (481.89,213.32) .. (495.52,213.32) .. controls (509.15,213.32) and (520.2,223.35) .. (520.2,235.73) .. controls (520.2,248.1) and (509.15,258.13) .. (495.52,258.13) .. controls (481.89,258.13) and (470.85,248.1) .. (470.85,235.73) -- cycle ;
%Straight Lines [id:da7658409443650374] 
\draw    (321.81,91.32) -- (473.41,249.36) ;
\draw [shift={(474.79,250.81)}, rotate = 226.19] [color={rgb, 255:red, 0; green, 0; blue, 0 }  ][line width=0.75]    (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29)   ;
%Straight Lines [id:da26021731637003764] 
\draw    (322.79,118.2) -- (473.29,249.49) ;
\draw [shift={(474.79,250.81)}, rotate = 221.1] [color={rgb, 255:red, 0; green, 0; blue, 0 }  ][line width=0.75]    (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29)   ;
%Straight Lines [id:da5122873809718536] 
\draw    (324.77,250.81) -- (472.79,250.81) ;
\draw [shift={(474.79,250.81)}, rotate = 180] [color={rgb, 255:red, 0; green, 0; blue, 0 }  ][line width=0.75]    (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29)   ;
%Straight Lines [id:da32310611897204766] 
\draw    (322.79,118.2) -- (472.82,91.66) ;
\draw [shift={(474.79,91.32)}, rotate = 169.97] [color={rgb, 255:red, 0; green, 0; blue, 0 }  ][line width=0.75]    (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29)   ;
%Straight Lines [id:da35509056386410176] 
\draw    (321.81,91.32) -- (472.79,91.32) ;
\draw [shift={(474.79,91.32)}, rotate = 180] [color={rgb, 255:red, 0; green, 0; blue, 0 }  ][line width=0.75]    (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29)   ;
%Straight Lines [id:da1321281387990918] 
\draw    (324.77,250.81) -- (473.42,92.77) ;
\draw [shift={(474.79,91.32)}, rotate = 133.25] [color={rgb, 255:red, 0; green, 0; blue, 0 }  ][line width=0.75]    (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29)   ;
%Shape: Rectangle [id:dp8502914470602687] 
\draw   (301.08,80.56) -- (319.83,80.56) -- (319.83,259.77) -- (301.08,259.77) -- cycle ;
%Straight Lines [id:da31677480479958064] 
\draw  [dash pattern={on 0.84pt off 2.51pt}]  (310.95,200.63) -- (310.95,210.49) -- (309.96,233.78) ;
%Straight Lines [id:da017773812738619554] 
\draw    (322.79,171.96) -- (473.03,92.25) ;
\draw [shift={(474.79,91.32)}, rotate = 152.05] [color={rgb, 255:red, 0; green, 0; blue, 0 }  ][line width=0.75]    (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29)   ;
%Straight Lines [id:da6131006224913382] 
\draw    (322.79,171.96) -- (473.02,249.89) ;
\draw [shift={(474.79,250.81)}, rotate = 207.42] [color={rgb, 255:red, 0; green, 0; blue, 0 }  ][line width=0.75]    (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29)   ;
%Rounded Rect [id:dp3516142081859148] 
\draw  [fill={rgb, 255:red, 155; green, 155; blue, 155 }  ,fill opacity=0.23 ] (119.47,103.11) .. controls (119.47,79.36) and (138.72,60.1) .. (162.48,60.1) -- (402.17,60.1) .. controls (425.93,60.1) and (445.18,79.36) .. (445.18,103.11) -- (445.18,232.14) .. controls (445.18,255.89) and (425.93,275.15) .. (402.17,275.15) -- (162.48,275.15) .. controls (138.72,275.15) and (119.47,255.89) .. (119.47,232.14) -- cycle ;

% Text Node
\draw (165,104.4) node [anchor=north west][inner sep=0.75pt]  [font=\huge]  {$\frac{\sum _{i=1}^{k}X_{t}^{a_{i}}}{\sqrt{P}}$};
% Text Node
\draw (156,189) node [anchor=north west][inner sep=0.75pt]  [font=\large] [align=left] {{\large \ \ \ Hamming  }\\[-10pt] {\large \ \ \ weight $(V)$}\\[-10pt] {\large \  computation}};
% Text Node
\draw (28,32) node [anchor=north west][inner sep=0.75pt]  [font=\small] [align=left] {{\large Channel input}\\{\large  $\displaystyle \ \ \ \ \ \ \ \ \Tilde{\textbf{X}}$}};
% Text Node
\draw (220.53,30.96) node [anchor=north west][inner sep=0.75pt]  [font=\large]  {{Hamming weight}\\{\ \ $V$}};
% Text Node
\draw (487.53,95.96) node [anchor=north west][inner sep=0.75pt]  [font=\LARGE]  {$0$};
% Text Node
\draw (488.53,225.39) node [anchor=north west][inner sep=0.75pt]  [font=\LARGE]  {$1$};
% Text Node
\draw (421,32) node [anchor=north west][inner sep=0.75pt]  [font=\large] [align=left] {{\large Channel Output}\\{\large $\displaystyle \ \ \ \ \ \ \ \ \ \ Z$}};
% Text Node
\draw (48.2,284.73) node [anchor=north west][inner sep=0.75pt]  [font=\large]  {$active\ user\ set:\ \{a_{1} ,a_{2} ,\dotsc ,a_{k} \}$};
% Text Node
\draw (306.92,168.09) node [anchor=north west][inner sep=0.75pt]    {$i$};
% Text Node
\draw (328.51,150.22) node [anchor=north west][inner sep=0.75pt]  [font=\large,rotate=-332.77]  {$p_{i}$};
% Text Node
\draw (329.93,176.77) node [anchor=north west][inner sep=0.75pt]  [font=\large,rotate=-29.2]  {$1-p_{i}$};
% Text Node
\draw (49.02,302.55) node [anchor=north west][inner sep=0.75pt]  [font=\large]  {$X^{a_{i}} \in \{0,\sqrt{P}\}$};
% Text Node
\draw (348.88,282.21) node [anchor=north west][inner sep=0.75pt]  [font=\Large]  {$p_{i} =1-e^{-\frac{\gamma}{i\sigma ^{2}P +\sigma _{w}^{2}}}$};
% Text Node
\draw (61.92,90.38) node [anchor=north west][inner sep=0.75pt]  [font=\large]  {$X^{a_{1}}$};
% Text Node
\draw (60.03,226.07) node [anchor=north west][inner sep=0.75pt]  [font=\large]  {$X^{a_{k}}$};
% Text Node
\draw (60.74,135.53) node [anchor=north west][inner sep=0.75pt]  [font=\large]  {$X^{a_{2}}$};
% Text Node
\draw (306.92,240.67) node [anchor=north west][inner sep=0.75pt]    {$k$};
% Text Node
\draw (305.94,110.75) node [anchor=north west][inner sep=0.75pt]    {$1$};
% Text Node
\draw (305.94,88.35) node [anchor=north west][inner sep=0.75pt]    {$0$};
\end{tikzpicture}
}   \setlength{\belowcaptionskip}{-38pt}
    \caption{Equivalent channel with only the active users of the $(\ell,k)-$MnAC as inputs.}
    \label{fig:redalpha}
    \end{figure}

\subsection{ Maximum rate of the equivalent channel}
   
\begin{lemma}
For a  given fading statistics $\sigma^2$, noise variance $\sigma_w^2$, and non-coherent detector threshold $\gamma$ for the $(\ell,k)$-MnAC, the maximum rate of the equivalent point-to-point channel in Fig. \ref{fig:redalpha} is 
 \begin{equation} 
    C=\max_{(\gamma,q_{sp})}h\Big(E\Big[e^{-\frac{\gamma}{V  \sigma^{2}P+\sigma_{w}^{2}}}\Big]\Big)-E\Big[h\Big(e^{-\frac{\gamma}{V  \sigma^{2}P+\sigma_{w}^{2}}}\Big)\Big]  \label{jengap2}
\end{equation} where $E(\cdot)$ denotes expectation w.r.t  $ V$,  $h(x)=-x \log x-(1-x) \log (1-x)$ is the binary entropy function and $q_{sp}$ denotes the optimal sampling probability used for i.i.d preamble generation across all users.
 \label{lem1}
 \end{lemma}
\begin{proof} The equivalent point-to-point communication channel in Fig. \ref{fig:redalpha}  has two tunable parameters, viz, the sampling probability vector $\textbf{q} =\{q_{a_1} \ldots q_{a_k}\}$ at the user side and the non-coherent detector threshold $\gamma$ at the BS. Thus, the maximum rate of this equivalent channel between the binary vector input $\Tilde{\textbf{X}}$ and binary scalar output $Z$ is  
    completing the proof.\end{proof}    





\vspace{-0.3cm}\subsection{st}


  
 where $n(\ell)$ is as given in Theorem 1. This is because $C$ in Lemma 1 is smaller than  $\frac{1}{2}\log (1+ kP_{av})$ where $P_{av}:= q_{sp}^*P$, with $ q_{sp}^*$ being  the optimal $ q_{sp}$ in Theorem 1. Clearly, the user identification in a Gaussian MnAC requires lesser number of channel uses due to the fact that  the model does not incorporate fading and is not constrained to OOK signaling and non-coherent detection as in our non-coherent $(\ell,k)-$MnAC. 
\section{Pghhjkkkff}



\begin{definition}
\textbf{ $\zeta \% -$ partial recovery}: For a true active set $\mathcal{A}$ and an estimated active set $\hat{\mathcal{A}}$,  consider an error event $E_1$  defined as 
\begin{equation}
    E_1 := \left\{\left|\hat{\mathcal{A}}^{\mathrm{c}} \cap \mathcal{A}\right| >  k\left(1-\frac{\zeta}{100}\right) \right\}. \label{errev}
\end{equation} We have $\zeta \%$-partial recovery, if \begin{equation}
    \mathbb{P}_{e,\zeta}^{(\ell)}:= P( E_1)  \rightarrow 0 \text { as } \ell \rightarrow \infty, \nonumber
\end{equation} 
where $\mathbb{P}_{e,\zeta}^{(\ell)}$ denotes the probability of error for $\zeta \% -$ partial recovery.  Probability  of successful identification for $\zeta \% -$  recovery is defined as $\mathbb{P}_{succ,\zeta}^{(\ell)}:= 1 -\mathbb{P}_{e,\zeta}^{(\ell)}.$

\end{definition}

The error event $E_1$ considers if the fraction of true active devices in $\mathcal{A}$  that are misdetected exceeds $\left(1-\frac{\zeta}{100}\right)$. Note that since our proposed strategies output a set of size $k$, both false positives and misdetections occur in equal numbers. Thus, the error event $E_1$ in (\ref{errev}) is essentially equivalent to $\left\{\left|\hat{\mathcal{A}}^{\mathrm{c}} \cap \mathcal{A}\right| > k\left(1-\frac{\zeta}{100}\right)  \bigcup \left|\hat{\mathcal{A}} \cap \mathcal{A}^c\right| >  k\left(1-\frac{\zeta}{100}\right)  \right\}$. Moreover, when $\zeta = 100$, the partial recovery setting boils down to our original setting of exact recovery given in Def. 2. The case when the number of active users $k$ is unknown at the BS will be discussed in Section IV.C.

   \subsection{N-COMP based user identification}

primarily analyzed  in the context of symmetric noise
models wherein errors in test results are equally likely \cite{6120373,6763117}. r is \cite{4797638} where the focus is on the problem of neighbor discovery in a wireless sensor network rather than the massive random access setting considered in this paper.

Let $\mathcal{G}_i:=\frac{\sum_{t=1}^{n}X^{i}_t}{\sqrt{P}$ denote the Hamming weight of $\textbf{X}^{i}$, the ymbols if it is in active state. Let $\mathcal{R}_i:=\frac{\sum_{t=1}^{n}X^{i}_tZ_t}{\sqrt{P}}$ denote the number of these channel uses in which the received energy at the detector exceeds a predetermined threshold. In N-COMP based user identification, our strategy is to classify the $k$ 

\begin{figure} 
\centering
\begin{minipage}{.5\textwidth}
    \centering
        \begin{tikzpicture}
  \sbox0{\includegraphics[width=.9\linewidth,height=65mm,trim={1.3cm 0.55cm 0 0},clip]{ICASSP_NCOMP_EXACT.png}}}% get width and height
  \node[above right,inner sep=0pt] at (0,0)  {\usebox{0}};
  \node[black] at (0.5\wd0,-0.06\ht0) {\normalsize{Number of channel-uses, $n$}};
  \node[black,rotate=90] at (-0.04\wd0,0.5\ht0) {\normalsize{Probability of successful identification}};
\end{tikzpicture}
    \setlength{\belowcaptionskip}{-15pt}
    \caption{NCOMP: Exact recovery for $(1000,25)$-MnAC. }
    \label{fig:2usercap1}
    \end{minipage}%  
    \begin{minipage}{.5\textwidth}
    \centering
        \begin{tikzpicture}
  \sbox0{\includegraphics[width=.9\linewidth,height=65mm,trim={1.3cm 0.55cm 0 0},clip]{ICASSP_NCOMP_90perc.png}}% get width and height
  \node[above right,inner sep=0pt] at (0,0)  {\usebox{0}};
  \node[black] at (0.5\wd0,-0.06\ht0) {\normalsize{Number of channel-uses, $n$}};
  \node[black,rotate=90] at (-0.04\wd0,0.5\ht0) {\normalsize{Probability of successful identification}};
\end{tikzpicture}
    \setlength{\belowcaptionskip}{-15pt}
    \caption{NCOMP: 90$\%$ recovery for $(1000,25)$-MnAC. }
    \label{fig:2usercap2}
    \end{minipage}
    \end{figure}
    \subsection{BP based user identification}
    



\begin{figure}   
    \centering
\begin{minipage}{.5\textwidth}
    \begin{tikzpicture}
  \sbox0{\includegraphics[width=.9\linewidth,height=65mm,trim={1.4cm 0.8cm 0 0},clip]{BP_STvsNCOMP_exact.png}}% get width and height
  \node[above right,inner sep=0pt] at (0,0)  {\usebox{0}};
  \node[black] at (0.5\wd0,-0.06\ht0) {\normalsize{Number of channel-uses, $n$}};
  \node[black,rotate=90] at (-0.04\wd0,0.5\ht0) {\small{Probability of successful identification}};
\end{tikzpicture}
    \setlength{\belowcaptionskip}{-15pt} 
    \caption{\footnotesize{Exact recovery: $(1000,25)$-MnAC at SNR = 10 dB.}}
    \label{fig:z5}
    \end{minipage}%
\begin{minipage}{.5\textwidth}
    \centering
    \begin{tikzpicture}
  \sbox0{\includegraphics[width=.9\linewidth,height=65mm,trim={1.4cm 0.8cm 0 0},clip]{BP_STvsNCOMP_90.png}}% get width and height
  \node[above right,inner sep=0pt] at (0,0)  {\usebox{0}};
  \node[black] at (0.5\wd0,-0.06\ht0) {\normalsize{Number of channel-uses, $n$}};
  \node[black,rotate=90] at (-0.04\wd0,0.5\ht0) {\small{Probability of successful identification}};
\end{tikzpicture}
\setlength{\belowcaptionskip}{-15pt} 
    \caption{\footnotesize{$90\%$ recovery: $(1000,25)$-MnAC at SNR = 10 dB.} }
    \label{fig:z6}
    \end{minipage}
    \end{figure}



\begin{figure}   
    \centering
    \begin{tikzpicture}
  \sbox0{\includegraphics[width=.55\linewidth,height=70mm,trim={1.4cm 0.8cm 0 0},clip]{BP_ST_SHT_AHT_exact_10dB.png}}% get width and height
  \node[above right,inner sep=0pt] at (0,0)  {\usebox{0}};
  \node[black] at (0.5\wd0,-0.06\ht0) {\small{\small{Number of channel-uses $n$}}};
  \node[black,rotate=90] at (-0.04\wd0,0.5\ht0) {\small{Probability of successful identification}};
\end{tikzpicture}
    \setlength{\belowcaptionskip}{-25pt} 
    \caption{ Comparison of various BP algorithms for exact recovery in $(1000,25)$-MnAC at SNR $=$ 10 dB. }
    \label{fig:q4}
    \end{figure}
\begin{figure}   
    \centering
    \begin{tikzpicture}
  \sbox0{\includegraphics[width=.55\linewidth,height=70mm,trim={1.4cm 0.8cm 0 0},clip]{BP_ST_SHT_AHT_90_10dB.png}}% get width and height
  \node[above right,inner sep=0pt] at (0,0)  {\usebox{0}};
  \node[black] at (0.5\wd0,-0.06\ht0) {\small{\small{Number of channel-uses $n$}}};
  \node[black,rotate=90] at (-0.04\wd0,0.5\ht0) {\small{Probability of successful identification}};
\end{tikzpicture}
    \setlength{\belowcaptionskip}{-25pt} 
    \caption{ Comparison of various BP algorithms for $90\%$ recovery in $(1000,25)$-MnAC at  SNR $=$ 10 dB. }
    \label{fig:q5}
    \end{figure}




\section{a}
    t.

\bibliographystyle{IEEEtranTCOM}

\bibliography{IEEE_TCOM}


\end{document}

Descobri que a linha 372 \sbox0{\includegraphics[width=.9\linewidth,height=65mm,trim={1.3cm 0.55cm 0 0},clip]{ICASSP_NCOMP_EXACT.png}}}% get width and heighttem um extra

'}' que tentei remover. Mas isso não resolve o problema. Alguém pode me informar o que há de errado no meu código?

IEEETranTCOM.cls está disponível aqui:https://www.comsoc.org/media/1381/download

Responder1

Seus erros estão aqui:

  • Linha 284: Você não pode ter um nó com quebra de linha que também não possua a alignchave ment. Com base no seu código, usei [align=left]. Referência:Quebras de linha manuais/automáticas e alinhamento de texto em nós TikZ

  • Linha 364: Você precisa de um conjunto balanceado de chaves para \frac. Você está perdendo a chave de fechamento do denominador em \frac{\sum_{t = 1}^n X^i_t}{\sqrt{P}}.

  • Linha 371: Você tem uma chave de fechamento extra }com \sbox0{...}}.

informação relacionada