Como alterar o gráfico de superfície 3D do pgfplots para ter uma aparência melhor

Como alterar o gráfico de superfície 3D do pgfplots para ter uma aparência melhor

Quero usar TikZ/pgf para produzir o seguinte gráfico 3D, que consiste em:

  • um gráfico da função f(x, y) = xy/(x^2 + y^2) quando (x, y) != (0,0) e f(0,0)=0;
  • a intersecção do plano y = x com a superfície, ou seja, a reta com equação y = x, z = 1/2 mas com o ponto (0, 0, 1/2) omitido;
  • a origem; e
  • pelo menos a porção positiva dos eixos x, y e z.

Enredo matemático

Esse gráfico foi criado com o Mathematica e usa um ponto de vista (2,85216, 1,62152, 0,828166) em coordenadas espéricas (r,θ, φ) (onde os ângulos estão em radianos, não em graus).

Minha pgfplotstentativa usa o código abaixo e produz o gráfico mostrado a seguir.

Pergunta: Como posso alterar o pgfplotscódigo para se parecer com o gráfico do Mathematica para que:

  1. usa essencialmente o mesmo ponto de vista (e portanto a mesma orientação dos eixos);

  2. omite regras de contorno na superfície;

  3. tem a quebra no eixo z na reta y = x, z = 1/2;

  4. utiliza um ponto mais convincente na origem; e

  5. evita os "recortes" na superfície perto do eixo z.

Em relação ao 5., tentei aumentar o samplesvalor, mas isso causou um TeX capacity exceedederro!

Minha pgfplotsaída:

pgfplot

Meu código:

\documentclass{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=newest}

% Define a grayscale colormap
\pgfplotsset{
    colormap={grayscale}{[1pt] rgb255(0pt)=(0,0,0); rgb255(1000pt)=(255,255,255)}
}

\begin{document}
\begin{tikzpicture}
\begin{axis}[
    view={75.833}{35.3489},
    axis lines=center, 
    xlabel={$x$}, ylabel={$y$}, zlabel={$z$},
    ticks=none, 
    domain=-1:1, y domain=-1:1,
    samples=50, % need to avoid "jaggies"
    z buffer=sort,
    clip=false,
    xmin=-1, xmax=1, ymin=-1, ymax=1, zmin=-1, zmax=1.5, 
    colormap name=grayscale, 
    xlabel style={anchor=north west}, ylabel style={anchor=north west},
    zlabel style={anchor=south},
    ]
    % Surface plot
    \addplot3[surf, shader=faceted interp, opacity=0.7] 
        {x != 0 || y != 0 ? (x*y)/(x^2 + y^2) : 0};
    % Point at the origin
    \addplot3[mark=*, mark size=1,mark options={color=black}] coordinates {(0, 0, 0)};
    % Curve of intersection of plane and surface
    \addplot3[samples=20, samples y=0, thick, color=black] 
        ({x}, {x}, {1/2});
\end{axis}
\end{tikzpicture}
\end{document}

Responder1

Atualizar

insira a descrição da imagem aqui

atualizar

Modifiquei o código de acordo com os numerosos comentários de @murray. Existem duas maneiras de representar a superfície: ou usando coordenadas polares para o domínio de definição, ou usando coordenadas normais. O primeiro trata idealmente da singularidade na origem, pois a respeita. Este último segue a definição inicial da função, mas tem dificuldades com seu comportamento em torno de (0, 0).

Para este último, as principais modificações em relação à resposta inicial são as seguintes:

  • a superfície é dividida em duas (você<0ey>0respectivamente)
  • bordas são adicionadas para uma melhor compreensão da superfície
  • os eixos são desenhados separadamente (como segmentos TikZ).

A ordem dos vários elementos gráficos conta.

Observação Abaixo, há uma imagem obtida matplotlibcom cálculos baseados em uma grade de 10000x10000. A superfície nunca pode ser suavizada em torno da origem com este último ponto de vista.

insira a descrição da imagem aqui

Novo código para o desenho utilizando coordenadas polares para o domínio

\documentclass[11pt, margin=10pt]{standalone}
\usepackage{pgfplots}
\usetikzlibrary{math}
  
\pgfplotsset{compat=1.17}
\begin{document}

 \pgfplotsset{
    colormap={cmpgray}{rgb255=(221,221,221) rgb255=(54,54,54)}
} 
\xdefinecolor{axisRGB}{RGB}{128, 30, 0}  % {128, 128, 145}
\begin{tikzpicture}
  \begin{axis}[
    data cs=polar,
    axis lines=none,  % grid=major,
    view={110}{22},
    z buffer=sort,
    clip=false]
    
    % negative Ox axis 
    \draw[axisRGB, thin] (0, 0, 0) -- (-1.8, 0, 0);
    \draw[axisRGB, thin, ->] (0, 0, .02) -- (0, 0, .8)
    node[right, text=black, scale=.7] {$z$};

    \addplot3[
    surf,
    shader=interp,
    domain=0:360, domain y=.02:1.4,
    samples=50, samples y=20,
    opacity=0.95]
    {.5*sin(2*x)};
    
    % negative Oy axis 
    \draw[axisRGB, thin] (0, 0, 0) -- (0, -1.8, 0);
    % negative Oz axis 
    \draw[axisRGB, thin] (0, 0, -.025) -- (0, 0, -.8);
    
    % point at the origin
    \fill[opacity=.7] (0, 0, 0) circle (1.2pt);

    \draw[axisRGB, thin, ->] (0, .02, 0, 0) -- (0, 1.8, 0)
    node[below, text=black, scale=.7] {$y$};
    \draw[axisRGB, thin, ->] (.02, 0, 0) -- (1.8, 0, 0)
    node[below, text=black, scale=.7] {$x$};

    % Intersection curve of surface and plane z=1/2
    \draw[thin] (-1, -1, 1/2) -- (1, 1, 1/2);
  \end{axis}
\end{tikzpicture}
\end{document}

Novo código para o segundo desenho

\documentclass[11pt, margin=10pt]{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.17}
\begin{document}
 \pgfplotsset{
    colormap={cmpgray}{rgb255=(221,221,221) rgb255=(54,54,54)}
} 
\xdefinecolor{axisRGB}{RGB}{128, 128, 145}

\begin{tikzpicture}
  \begin{axis}[
    view={115}{19},
    axis lines=none,  % center, 
    xlabel={$x$}, ylabel={$y$}, zlabel={$z$},
    ticks=none, 
    z buffer=sort,
    clip=false,
    xmin=-1.3, xmax=1.3,
    ymin=-1.3, ymax=1.3,
    zmin=-1, zmax=1.3, 
    xlabel style={anchor=north west, scale=.8},
    ylabel style={anchor=north west, scale=.8},
    zlabel style={anchor=south, scale=.8},
    ]
    
    % Surface y<0
    \addplot3[
    surf,
    domain=-1:1,
    y domain=-1:-.005,
    samples=55, 
    colormap name=cmpgray,
    shader=interp,  % flat, faceted interp,
    opacity=0.75]
    {x*y/(x^2 + y^2)};

    % Surface y<0 's border
    \addplot3[%
    draw=black, ultra thin,
    domain=-1:1,
    samples y=0]
    (x, -1, {-x/(x*x +1)});
    \addplot3[%
    draw=black, ultra thin,
    domain=-1:1,
    samples y=0]
    (-1, x, {-x/(x*x +1)});

    % negative Ox and Oy axes
    \draw[axisRGB, thin] (0, 0, 0) -- (0, -1.4, 0);
    \draw[axisRGB, thin] (0, 0, 0) -- (-1.4, 0, 0);

    % Point at the origin
    \fill (0, 0, 0) circle (1.2pt);

    % positive Oz axis 
    \draw[axisRGB, thin, ->] (0, 0, .02) -- (0, 0, 1.3)
    node[right, text=black, scale=.7] {$z$};
    
    % Surface y>0
    \addplot3[
    surf,
    domain=-1:1,
    y domain=.005:1,
    samples=55, 
    colormap name=cmpgray, 
    shader=interp,  % flat, faceted interp,
    opacity=0.75]
    {x*y/(x*x + y*y)};

    % positive Oy axis 
    \draw[axisRGB, thin, ->] (0, .02, 0, 0) -- (0, 1.4, 0)
    node[below, text=black, scale=.7] {$y$};

    % negative Oz axis 
    \draw[axisRGB, thin] (0, 0, -.025) -- (0, 0, -1.3);

    % Intersection curve of surface and plane z=1/2
    \draw[thin] (-1, -1, 1/2) -- (1, 1, 1/2);

    % Surface y>0 's border
    \addplot3[%
    draw=black, very thin,
    domain=-1:1,
    samples y=0]
    (x, 1, {x/(x*x +1)});
    \addplot3[%
    draw=black, very thin,
    domain=-1:1,
    samples y=0]
    (1, x, {x/(x*x +1)});

    % positive Ox axis 
    \draw[axisRGB, thin, ->] (.02, 0, 0) -- (1.5, 0, 0)
    node[below, text=black, scale=.7] {$x$};
  \end{axis}
\end{tikzpicture}
\end{document}

Resposta antiga

insira a descrição da imagem aqui

Algo assim; Mudei apenas o ponto de vista, o comprimento dos eixos de coordenadas e o shader.

O código

\documentclass[11pt, margin=10pt]{standalone}
\usepackage{pgfplots}
\usepgfplotslibrary{colorbrewer}

\pgfplotsset{compat=1.17}
\begin{document}

\begin{tikzpicture}
  \begin{axis}[
    view={115}{15},
    axis lines=center, 
    xlabel={$x$}, ylabel={$y$}, zlabel={$z$},
    ticks=none, 
    domain=-1:1, y domain=-1:1,
    samples=50, % need to avoid "jaggies"
    z buffer=sort,
    clip=false,
    xmin=-1.3, xmax=1.3,
    ymin=-1.3, ymax=1.3,
    zmin=-1, zmax=1.3, 
    xlabel style={anchor=north west, scale=.8},
    ylabel style={anchor=north west, scale=.8},
    zlabel style={anchor=south, scale=.8},
    ]
    % Surface plot
    \addplot3[
    surf,
    colormap/Blues,  % cool,
    % shader=faceted interp,
    opacity=0.3] 
    {x != 0 || y != 0 ? (x*y)/(x^2 + y^2) : 0};
    
    % Point at the origin
    \addplot3[mark=*, mark size=1,mark options={color=black}]
    coordinates {(0, 0, 0)};
    
    % Curve of intersection of plane and surface
    \addplot3[samples=20, samples y=0, thick, color=black] 
    ({x}, {x}, {1/2});
  \end{axis}
\end{tikzpicture}
\end{document}

informação relacionada