Tenho um quadro com um itemize
ambiente onde cada um \item
contém uma equação. Algumas das equações irão mudar, entretanto, então eu as envolvi em um overprint
ambiente, para que uma equação apareça e seja substituída por outra. Isso funciona muito bem, mas o espaçamento vertical dos itens não é o ideal, como pode ser visto a seguir.
Compare o espaço entre a \phi_a
equação e o próximo item e o da \phi_f
equação e o próximo item. Como isso pode ser corrigido? Ou precisa ser feito manualmente \vspace
ou algo do tipo?
Aqui está o MWE:
\documentclass[utf8]{beamer}
\begin{document}
\begin{frame}
\begin{itemize}
\item A NBR 6118 define $\phi$ como composto por três parcelas:
\begin{equation*}
\phi = \phi_a + \phi_f + \phi_d
\end{equation*}
\item $\phi_a$ representa a deformação rápida;
\begin{equation*}
\phi_a = 0,8\left(1-\beta_1\left(t_0\right)\right)
\end{equation*}
\item $\phi_f$ representa a deformação lenta irreversível;
\begin{overprint}
\onslide<1>
\begin{equation*}
\phi_f = \phi_{f\infty}\left(\beta_f\left(t\right)-\beta_f\left(t_0\right)\right)
\end{equation*}
\onslide<2>
\begin{equation*}
\phi_f = \phi_{f\infty}\left(\beta_f\left(t_i\right)-\beta_f\left(t_{i-1}\right)\right)
\end{equation*}
\end{overprint}
\item $\phi_d$ representa a deformação lenta reversível.
\begin{overprint}
\onslide<1>
\begin{equation*}
\phi_d = 0,4\frac{t-t_0+20}{t-t_0+70}
\end{equation*}
\onslide<2>
\begin{equation*}
\phi_d = 0,4\left(\frac{t_i-t_0+20}{t_i-t_0+70}-\frac{t_{i-1}-t_0+20}{t_{i-1}-t_0+70}\right)
\end{equation*}
\end{overprint}
\end{itemize}
\end{frame}
\end{document}
Responder1
overprint
só lida bem com casos bastante simples. Suspeito que o uso aqui não seja suficientemente simples, pelo menos sem algum tipo de ajuste.
Mais simples de usar overlayarea
para todo o itemize
ambiente:
\documentclass[utf8]{beamer}
\begin{document}
\begin{frame}
\begin{overlayarea}{\linewidth}{.75\textheight}
\begin{itemize}
\item A NBR 6118 define $\phi$ como composto por três parcelas:
\begin{equation*}
\phi = \phi_a + \phi_f + \phi_d
\end{equation*}
\item $\phi_a$ representa a deformação rápida;
\begin{equation*}
\phi_a = 0,8\left(1-\beta_1\left(t_0\right)\right)
\end{equation*}
\item $\phi_f$ representa a deformação lenta irreversível;
\only<1>{%
\begin{equation*}
\phi_f = \phi_{f\infty}\left(\beta_f\left(t\right)-\beta_f\left(t_0\right)\right)
\end{equation*}}
\only<2>{%
\begin{equation*}
\phi_f = \phi_{f\infty}\left(\beta_f\left(t_i\right)-\beta_f\left(t_{i-1}\right)\right)
\end{equation*}}
\item $\phi_d$ representa a deformação lenta reversível.
\only<1>{%
\begin{equation*}
\phi_d = 0,4\frac{t-t_0+20}{t-t_0+70}
\end{equation*}}
\only<2>{%
\begin{equation*}
\phi_d = 0,4\left(\frac{t_i-t_0+20}{t_i-t_0+70}-\frac{t_{i-1}-t_0+20}{t_{i-1}-t_0+70}\right)
\end{equation*}}
\end{itemize}
\end{overlayarea}
\end{frame}
\end{document}