решение1
- Учитывая вашу репутацию, вы должны знать, что вам следует предоставить MWE.
- Почему вы спрашиваете, как можно
\zeta
воспроизвести\sum
символы в LaTeX, если вы и так знаете их названия?
Если этот код не решает вашу проблему, отредактируйте свой вопрос и сделайте его более конкретным:
\documentclass{book}
\usepackage{amsmath, amssymb}
\begin{document}
\[
-\frac{{\zeta}^{\prime}(s)}{\zeta(s)} = \sum_{m\geq 1}\frac{\Lambda(n)}{{n}^{s}}
\]
\end{document}
Редактировать:
Как сказал Мико, вот результат с newtxmath
пакетом:
\documentclass{book}
\usepackage{newtxmath}
\DeclareMathOperator*{\mysum}{\text{\raisebox{-2pt}{\scalebox{2}{$\Sigma$}}}}
\begin{document}
\[
-\frac{{\zeta}^{\prime}(s)}{\zeta(s)} = \sum_{m\geq 1}\frac{\Lambda(n)}{{n}^{s}}
\]
\end{document}
В конце концов, вы сможете создать свой собственный математический оператор.
Второе редактирование
Как вы правильно заметили, мое первое решение ( \mysum
) не становится меньше, когда оно не находится в стиле отображения.
Я создал еще одну команду ( \mynewsum
), которая масштабируется в соответствии с размером оператора \sum
.
Если вам больше нравится мой первый вариант стиля отображения, вы можете использовать комбинацию двух предыдущих (см. \myfinesum
).
\documentclass{book}
\usepackage{amsmath, amssymb}
\usepackage{array}
\usepackage{booktabs}
\renewcommand*{\arraystretch}{3}
\usepackage{graphicx}
\usepackage{scalerel}
\DeclareMathOperator*{\mysum}{\raisebox{-2pt}{\scalebox{2}{$\Sigma$}}}
\DeclareMathOperator*{\mynewsum}{\scalerel*{\Sigma}{\sum}}
\DeclareMathOperator*{\myfinesum}{%
\mathchoice
{\raisebox{-2pt}{\scalebox{2}{$\Sigma$}}}%
{\scalerel*{\Sigma}{\sum}}%
{\scalerel*{\Sigma}{\sum}}%
{\scalerel*{\Sigma}{\sum}}
}
\begin{document}
\noindent
\begin{tabular}{l>{$\displaystyle}c<{$}>{$\textstyle}c<{$}>{$\scriptstyle}c<{$}>{$\scriptscriptstyle}c<{$}}
\toprule
&
\text{Display style}
&
\text{Text style}
&
\textstyle\text{Script style}
&
\textstyle\text{Scriptscript style}
\\[10pt]
\midrule
\textbackslash\texttt{mysum}
&
-\frac{{\zeta}^{\prime}(s)}{\zeta(s)} = \mysum_{m\geq 1}\frac{\Lambda(n)}{{n}^{s}}
&
-\frac{{\zeta}^{\prime}(s)}{\zeta(s)} = \mysum_{m\geq 1}\frac{\Lambda(n)}{{n}^{s}}
&
-\frac{{\zeta}^{\prime}(s)}{\zeta(s)} = \mysum_{m\geq 1}\frac{\Lambda(n)}{{n}^{s}}
&
-\frac{{\zeta}^{\prime}(s)}{\zeta(s)} = \mysum_{m\geq 1}\frac{\Lambda(n)}{{n}^{s}}
\\[10pt]
\textbackslash\texttt{mynewsum}
&
-\frac{{\zeta}^{\prime}(s)}{\zeta(s)} = \mynewsum_{m\geq 1}\frac{\Lambda(n)}{{n}^{s}}
&
-\frac{{\zeta}^{\prime}(s)}{\zeta(s)} = \mynewsum_{m\geq 1}\frac{\Lambda(n)}{{n}^{s}}
&
-\frac{{\zeta}^{\prime}(s)}{\zeta(s)} = \mynewsum_{m\geq 1}\frac{\Lambda(n)}{{n}^{s}}
&
-\frac{{\zeta}^{\prime}(s)}{\zeta(s)} = \mynewsum_{m\geq 1}\frac{\Lambda(n)}{{n}^{s}}
\\[10pt]
\textbackslash\texttt{myfinesum}
&
-\frac{{\zeta}^{\prime}(s)}{\zeta(s)} = \myfinesum_{m\geq 1}\frac{\Lambda(n)}{{n}^{s}}
&
-\frac{{\zeta}^{\prime}(s)}{\zeta(s)} = \myfinesum_{m\geq 1}\frac{\Lambda(n)}{{n}^{s}}
&
-\frac{{\zeta}^{\prime}(s)}{\zeta(s)} = \myfinesum_{m\geq 1}\frac{\Lambda(n)}{{n}^{s}}
&
-\frac{{\zeta}^{\prime}(s)}{\zeta(s)} = \myfinesum_{m\geq 1}\frac{\Lambda(n)}{{n}^{s}}
\\[10pt]
\bottomrule
\end{tabular}
\end{document}