%3F%20%D0%B2%20%D1%87%D0%B5%D0%BC%20%D0%BC%D0%BE%D0%B6%D0%B5%D1%82%20%D0%B1%D1%8B%D1%82%D1%8C%20%D0%BF%D1%80%D0%B8%D1%87%D0%B8%D0%BD%D0%B0%20%D1%82%D0%BE%D0%B3%D0%BE%2C%20%D1%87%D1%82%D0%BE%20%D0%BD%D0%B5%D0%BA%D0%BE%D1%82%D0%BE%D1%80%D1%8B%D0%B5%20%D1%81%D1%81%D1%8B%D0%BB%D0%BA%D0%B8%20%D0%BD%D0%B5%20%D0%BE%D1%82%D0%BE%D0%B1%D1%80%D0%B0%D0%B6%D0%B0%D1%8E%D1%82%D1%81%D1%8F%2C%20%D0%B0%20%D0%B4%D1%80%D1%83%D0%B3%D0%B8%D0%B5%20%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%B0%D1%8E%D1%82%20%D0%BD%D0%BE%D1%80%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%3F.png)
решение1
Ваш вопрос не очень понятен, но вот система уравнений, выровненная по первому =
знаку.
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{equation*}
\left\{ \begin{aligned}
\frac{\partial L}{\partial W_N}&=0 \rightarrow W_N=\sum_{k=1}^{L'}\alpha_k^{''}y_k^{}\varphi_2^{}(x_k^{}N)\\
\frac{\partial L}{\partial W_b}&=0 \rightarrow W_N=\sum_{k=1}^{L'}\alpha_k^{''}y_k^{}=0\\
\frac{\partial L}{\partial W_{e_k}}&=0 \rightarrow \gamma e_k^{}k=1,2,\dots,L'\\
\frac{\partial L}{\partial W_{\alpha_k^{''}}}&=0 \rightarrow k\biggl[\binom{W_M}{W_N}^T\binom{\varphi_1^{}{x_{KM}^{}}}{\varphi_2^{}{x_{KN}^{}}}+b\biggr]-1+e_k^{}=0\\
\end{aligned} \right.
\end{equation*}
\end{document}