
Я читал, что eqnarray больше не следует использовать, а также иногда я получаю результаты, в которых он выглядит некрасиво;
Я пытаюсь заменить его — однако, если у меня есть уравнение в несколько строк, eqnarray выглядит красиво:
\begin{eqnarray*}
\mathbb{P}\bigg( \big \vert \hat{\tau}_{jk}-\tau_{jk} \big \vert \geq \epsilon \bigg) &=& \mathbb{P}\bigg( T \cdot \big \vert \hat{\tau}_{jk}-\tau_{jk} \big \vert \geq T \epsilon \bigg) =\mathbb{P}\bigg( \big \vert f(X_1, \ldots, X_T)-\mathbb{E}f(X_1, \ldots,X_T) \big \vert \geq T \cdot \epsilon \bigg) \\
&\leq& 2\exp\left( \frac{2\epsilon^2}{Tc^2\big(1+2\sum_{k=1}^T\phi(k)\big)}\right)
\end{eqnarray*}
Я получаю прекрасный результат, так как знаки = и $<=$ сначала находятся друг под другом, но также есть пробел перед знаком = и немного пробела после него; То же самое с <=: есть немного пробела перед ним и после него, что выглядит красиво;
Как мне это сделать с помощью пакета amsmath? Я пробовал align, но не смог сделать так, чтобы это выглядело так
решение1
У меня не возникло бы никаких сомнений, если бы меня попросили выбрать между версией eqnarray
и align
(сравните с окончательным уравнением в одну линию).
\documentclass{article}
\usepackage{amsmath,amssymb}
\begin{document}
\begin{eqnarray*}
\mathbb{P}\bigg( \big \vert \hat{\tau}_{jk}-\tau_{jk} \big \vert \geq \epsilon \bigg) &=& \mathbb{P}\bigg( T \cdot \big \vert \hat{\tau}_{jk}-\tau_{jk} \big \vert \geq T \epsilon \bigg) =\mathbb{P}\bigg( \big \vert f(X_1, \ldots, X_T)-\mathbb{E}f(X_1, \ldots,X_T) \big \vert \geq T \cdot \epsilon \bigg) \\
&\leq& 2\exp\left( \frac{2\epsilon^2}{Tc^2\big(1+2\sum_{k=1}^T\phi(k)\big)}\right)
\end{eqnarray*}
\begin{align*}
\mathbb{P}(\lvert \hat{\tau}_{jk}-\tau_{jk}\rvert \geq \epsilon)
&= \mathbb{P}(T\lvert\hat{\tau}_{jk}-\tau_{jk}\rvert \geq T \epsilon ) \vphantom{\Bigg|} \\
&= \mathbb{P}(\lvert f(X_1, \dots, X_T)-\mathbb{E}f(X_1, \dots,X_T)\rvert \geq T\epsilon) \\
&\leq 2\exp\biggl(\frac{2\epsilon^2}{Tc^2\bigl(1+2\sum_{k=1}^T\phi(k)\bigr)}\biggr)
\end{align*}
\begin{equation*}
\mathbb{P}(\lvert \hat{\tau}_{jk}-\tau_{jk}\rvert \geq \epsilon)
=\mathbb{P}(T\lvert\hat{\tau}_{jk}-\tau_{jk}\rvert \geq T \epsilon)
\end{equation*}
\end{document}
Можно ли получить (уродливые) большие пространства? Да, конечно.
\documentclass{article}
\usepackage{amsmath,amssymb}
\begin{document}
\begin{alignat*}{2}
\mathbb{P}(\lvert \hat{\tau}_{jk}-\tau_{jk}\rvert \geq \epsilon)
&\quad=\quad
&& \mathbb{P}(T\lvert\hat{\tau}_{jk}-\tau_{jk}\rvert \geq T \epsilon ) \vphantom{\Bigg|} \\
&\quad=\quad
&& \mathbb{P}(\lvert f(X_1, \dots, X_T)-\mathbb{E}f(X_1, \dots,X_T)\rvert \geq T\epsilon) \\
&\quad\leq\quad
&& 2\exp\biggl(\frac{2\epsilon^2}{Tc^2\bigl(1+2\sum_{k=1}^T\phi(k)\bigr)}\biggr)
\end{alignat*}
\begin{equation*}
\mathbb{P}(\lvert \hat{\tau}_{jk}-\tau_{jk}\rvert \geq \epsilon)
=\mathbb{P}(T\lvert\hat{\tau}_{jk}-\tau_{jk}\rvert \geq T \epsilon)
\end{equation*}
\end{document}
Сравните еще раз.