Визуальные ссылки на уравнения в средах выравнивания amsmath

Визуальные ссылки на уравнения в средах выравнивания amsmath

Я хотел бы «визуально связать» уравнения вalign

Поскольку картинка стоит многих слов, вот пример, который я сделал в MS Paint, чтобы продемонстрировать, что я имею в виду:

введите описание изображения здесь

Как этого можно достичь? MWE для целей тестирования:

\documentclass{article}
\usepackage{amsmath}
\allowdisplaybreaks

\begin{document}
    First, let us solve the following recursion formula:
        $$ F_{n + 1} = \alpha F_{n} + \beta$$
        \begin{align*}
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t}
        \end{align*}
\end{document}

решение1

Решение согласно моему комментарию:

\documentclass{article}
\usepackage{amsmath}
\allowdisplaybreaks
\usepackage{tikz}
\def\tikzmark#1{\begin{tikzpicture}[remember picture]\coordinate(#1);\end{tikzpicture}}
\begin{document}
 $$ F_{n + 1} = \alpha F_{n} + \beta$$
        \begin{align*}
            &\tikzmark{A}\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\tikzmark{C}\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
          &\tikzmark{D}\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
      &\tikzmark{B}\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t}
        \end{align*}
\begin{tikzpicture}[remember picture,overlay]
  \draw[-,red] (A)--([xshift=-0.6cm]A)|-(B);
   \draw[-,blue] (C)--([xshift=-0.4cm]C)|-(D);
\end{tikzpicture}
\end{document}

Выход:

введите описание изображения здесь

Обратите внимание, что линии начинаются от центра каждой строки (каждой математической строки) и, возможно, их придется отрегулировать, чтобы они были центрированы с помощью \equivсимвола.

Возможно, я смогу автоматизировать это позже, если вам интересно. ( yshift=2mmОпция перед буквой tikzmark в команде draw может исправить это вручную)

Связанный контент