У меня между двумя моими графиками есть пространство примерно в полстраницы: я хочу, чтобы они были ближе друг к другу. Вот MWE:
\documentclass[notitlepage]{report}
\usepackage[left=1in, right=1in, top=1in, bottom=1in]{geometry}
\usepackage{enumitem}
\usepackage{titling}
\usepackage{lipsum}
\usepackage[backend=biber]{biblatex}
\usepackage{graphicx}
\usepackage{placeins}
\usepackage{subcaption}
\begin{document}
\begin{figure}
\centering
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[height=2.0in]{linear.png}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.3$}
\end{subfigure}%
~
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[height=2.0in]{exponential.png}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.81$}
\end{subfigure}
\caption{Small $x[0]$}
\addtolength{\textfloatsep}{-0.2in}
\end{figure}
\FloatBarrier
This behavior could be due to $y'[t]$ decreasing in value quickly with large $y[0], \delta_{1}$, and $\delta_{2}$ and $x'[t]$ then increasing in value as the $-\delta_{2}y$ decreases in absolute value while the denominator, $1-\delta_{1}$ is small, causing $x[t]$ to increase faster.
For $x_[0] = .45$, we see similar behavior as we adjust our deltas, but $x[t]$ is monotone decreasing.
\begin{figure}
\centering
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[height=2.0in]{LowD.png}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.3$}
\end{subfigure}%
~
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[height=2.0in]{HigherD.png}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.81$}
\setlength{\belowcaptionskip}{-10pt}
\end{subfigure}
\caption{Large $x[0]$}
\end{figure}
\FloatBarrier
\end{document}
Как сэкономить место в середине страницы?
решение1
Вы можете принудительно расположить вторую цифру близко к тексту, если добавите !htbp
опцию -.
\documentclass[notitlepage]{report}
\usepackage[left=1in, right=1in, top=1in, bottom=1in]{geometry}
\usepackage{enumitem}
\usepackage{titling}
\usepackage{lipsum}
\usepackage[backend=biber]{biblatex}
\usepackage{graphicx}
\usepackage{placeins}
\usepackage{subcaption}
\usepackage{setspace}
\renewcommand{\topfraction}{0.45}
\begin{document}
\begin{figure}
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[height=2.0in]{1}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.3$}
\end{subfigure}%
~
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[height=2.0in]{1}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.81$}
\end{subfigure}
\caption{Small $x[0]$}
\addtolength{\textfloatsep}{-0.2in}
\end{figure}
\FloatBarrier
This behavior could be due to $y'[t]$ decreasing in value quickly with large $y[0], \delta_{1}$, and $\delta_{2}$ and $x'[t]$ then increasing in value as the $-\delta_{2}y$ decreases in absolute value while the denominator, $1-\delta_{1}$ is small, causing $x[t]$ to increase faster.
For $x_[0] = .45$, we see similar behavior as we adjust our deltas, but $x[t]$ is monotone decreasing.
\begin{figure}[!htbp]
\centering
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[height=2.0in]{1}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.3$}
\end{subfigure}%
~
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[height=2.0in]{1}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.81$}
\setlength{\belowcaptionskip}{-10pt}
\end{subfigure}
\caption{Large $x[0]$}
\end{figure}
\FloatBarrier
\end{document}
решение2
- вам не нужно использовать
\FloatBarrier
- для плавания
figure
добавить опцию для его размещения[ht]
(как также предложил @Jan вего ответ) - уменьшить ширину
subcption
с0.5
до например0.4
- для пробела между подрисунками используйте
\hfil
- удалить или
\setlength{\belowcaptionskip}{-10pt}
переместитьfigure
в преамбулу документа
\documentclass[notitlepage, demo]{report}% in real document delete option demo
\usepackage[margin=1in]{geometry}
\usepackage{enumitem}
\usepackage{titling}
\usepackage{lipsum}
\usepackage[backend=biber]{biblatex}
\usepackage{graphicx}
\usepackage{placeins}
\usepackage{subcaption}
\begin{document}
\begin{figure}[ht]
\centering
\begin{subfigure}{0.4\textwidth}
\centering
\includegraphics[height=2.0in]{linear.png}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.3$}
\end{subfigure}%
\hfil
\begin{subfigure}{0.4\textwidth}
\centering
\includegraphics[height=2.0in]{exponential.png}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.81$}
\end{subfigure}
\caption{Small $x[0]$}
\end{figure}
%\FloatBarrier
This behavior could be due to $y'[t]$ decreasing in value quickly with large $y[0], \delta_{1}$, and $\delta_{2}$ and $x'[t]$ then increasing in value as the $-\delta_{2}y$ decreases in absolute value while the denominator, $1-\delta_{1}$ is small, causing $x[t]$ to increase faster.
For $x_[0] = .45$, we see similar behavior as we adjust our deltas, but $x[t]$ is monotone decreasing.
\begin{figure}[ht]
\centering
\begin{subfigure}{0.4\textwidth}
\centering
\includegraphics[height=2.0in]{LowD.png}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.3$}
\end{subfigure}
\hfil
\begin{subfigure}{0.4\textwidth}
\centering
\includegraphics[height=2.0in]{HigherD.png}
\caption{$\delta_{1}$ and $\delta_{2}$ $= 0.81$}
\end{subfigure}
\caption{Large $x[0]$}
\end{figure}
%\FloatBarrier
\end{document}