
Можно ли строить графики сложных функций с помощью визуализации данных TikZ?
У меня есть передаточная функция G(s)=2/(20*s+1)^5*2/s
. Обратная Лапласатрансформироватьдает
g(t)=4-(e^(-t/20)*(3840000+192000*t+4800*t^2+80*t^3+t^4))/960000
или расширяется
g(t)=-(e^(-t/20)*t^4)/960000-(e^(-t/20)*t^3)/12000-1/200*e^(-t/20)*t^2-1/5*e^(-t/20)*t-4*e^(-t/20)+4
и мне приходится строить график g
на огромном интервале [0,280]
.
МВЭ:
\documentclass{scrartcl}
\usepackage{tikz}
\usetikzlibrary{datavisualization.formats.functions}
\begin{document}
\begin{tikzpicture}
\datavisualization[
scientific axes={clean},
all axes = grid,
x axis = {label = $t$},
y axis = {label = $y(t)$},
visualize as smooth line
]
data[format = function]
{
var x : interval[0 : 280];
%func y = 4 - (exp(-\value x/20) * (3840000 + 192000 * \value x + 4800 * \value x^2 + 80 * \value x^3 + \value x^4))/960000;
func y = -(exp(-\value x/20) * \value x^4)/960000 - (exp(-\value x/20) * \value x^3)/12000 - (exp(-\value x/20) * \value x^2)/200 - (exp(-\value x/20) * \value x)/5 - 4 * exp(-\value x/20) + 4;
};
\end{tikzpicture}
\end{document}
Я, естественно, получаю
Слишком большой размер.
ошибка, которая очевидна.
Я уже спросилпохожийвопрос. Решение было в сокращении интервала, но теперь это невозможно. Результат должен выглядеть так
Есть ли способ воспроизвести этот сюжет TikZ datavisualization
?
Заранее благодарю вас за вашу помощь и усилия!
решение1
Да, это так. Вы можете использовать /pgf/data/evaluator
ключ для локальной установки fpu
для разбора. Макрос \pgfmathparseFPU
, который локально включает fpu
, взят изздесь.
\documentclass{scrartcl}
\usepackage{tikz}
\usetikzlibrary{datavisualization.formats.functions}
\newcommand{\pgfmathparseFPU}[1]{\begingroup%
\pgfkeys{/pgf/fpu,/pgf/fpu/output format=fixed}%
\pgfmathparse{#1}%
\pgfmathsmuggle\pgfmathresult\endgroup}
\begin{document}
\begin{tikzpicture}
\datavisualization[
scientific axes={clean},
all axes = grid,
x axis = {label = $t$},
y axis = {label = $y(t)$},
visualize as smooth line,
/pgf/data/evaluator=\pgfmathparseFPU
]
data[format = function]
{
var x : interval[0 : 280];
%func y = 4 - (exp(-\value x/20) * (3840000 + 192000 * \value x + 4800 * \value x^2 + 80 * \value x^3 + \value x^4))/960000;
func y = -(exp(-\value x/20) * \value x^4)/960000 - (exp(-\value x/20) * \value x^3)/12000 - (exp(-\value x/20) * \value x^2)/200 - (exp(-\value x/20) * \value x)/5 - 4 * exp(-\value x/20) + 4;
};
\end{tikzpicture}
\end{document}
Конечно, первая функция тоже работает.
\documentclass{scrartcl}
\usepackage{tikz}
\usetikzlibrary{datavisualization.formats.functions}
\newcommand{\pgfmathparseFPU}[1]{\begingroup%
\pgfkeys{/pgf/fpu,/pgf/fpu/output format=fixed}%
\pgfmathparse{#1}%
\pgfmathsmuggle\pgfmathresult\endgroup}
\begin{document}
\begin{tikzpicture}
\datavisualization[
scientific axes={clean},
all axes = grid,
x axis = {label = $t$},
y axis = {label = $y(t)$},
visualize as smooth line,
/pgf/data/evaluator=\pgfmathparseFPU
]
data[format = function]
{
var x : interval[0 : 280];
func y = 4 - (exp(-\value x/20) * (3840000 + 192000 * \value x + 4800 * \value x^2 + 80 * \value x^3 + \value x^4))/960000;
%func y = -(exp(-\value x/20) * \value x^4)/960000 - (exp(-\value x/20) * \value x^3)/12000 - (exp(-\value x/20) * \value x^2)/200 - (exp(-\value x/20) * \value x)/5 - 4 * exp(-\value x/20) + 4;
};
\end{tikzpicture}
\end{document}