![Подсчет элементов в нескольких тестах в экзаменационном латексе](https://rvso.com/image/420039/%D0%9F%D0%BE%D0%B4%D1%81%D1%87%D0%B5%D1%82%20%D1%8D%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82%D0%BE%D0%B2%20%D0%B2%20%D0%BD%D0%B5%D1%81%D0%BA%D0%BE%D0%BB%D1%8C%D0%BA%D0%B8%D1%85%20%D1%82%D0%B5%D1%81%D1%82%D0%B0%D1%85%20%D0%B2%20%D1%8D%D0%BA%D0%B7%D0%B0%D0%BC%D0%B5%D0%BD%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D0%BE%D0%BC%20%D0%BB%D0%B0%D1%82%D0%B5%D0%BA%D1%81%D0%B5.png)
Мне нужно разместить более одного теста в буклете, и каждый тест сопровождается краткой статистикой (подсчет вопросов и общее количество баллов). Однако Tex имеет тенденцию подсчитывать общее количество вопросов и баллов во всем буклете. Как иметь отдельную статистику для каждого теста?
\documentclass[11pt,oneside,final,leqno]{exam}
\usepackage{amsmath, amssymb, latexsym, amscd, amsthm}
\usepackage{tikz}
\usepackage[margin=1in]{geometry}
\begin{document}
\section{Test A }
\begin{questions}
\addpoints
\question[3] Amanda wrote down four numbers.
The mean of these numbers is 15, the median is
\question[3] The surface area of a sphere is directly proportional to the square of its
\question[4] Find all the pairs $(x,y)$ of real numbers such that
\[
\begin{cases}
x+y+\frac xy=13,\\
\frac{x(x+y)}y=36.
\end{cases}
\]
\rule{5cm}{.7pt}
\numquestions{} questions, \numpages{} pages (including the cover) for the total of \numpoints{} marks.
\end{questions}
% \combinedgradetable[v][questions]
\pagebreak
\section{Test B }
\begin{questions}
\addpoints
\question[2] The average age of 33 fifth$-$graders is 11. The average age of 55 of
\question[3] Ming and Catherine walked to the store together to buy some pencils. Ming bought
\question[3] The lengths of the sides of a triangle in inches are three consecutive
\question[3] If $x+y-2z=13$, $x+y+4z=10$, and $x-y+z=14$, find $x-y$.
\rule{5cm}{.7pt}
\numquestions{} questions, \numpages{} pages (including the cover) for the total of \numpoints{} marks.
\end{questions}
\newpage
\section{Test C }
\begin{questions}
\addpoints
\question[3]
On a map, a straight road measuring 600 m is represented by a line segment of length 7.5 cm.
\question[4] If $x,y$ are integers such that $-8\leq x\leq 7$ and $-1\leq y\leq 6$, find
\question[4] This question has two parts.
\rule{5cm}{.7pt}
\numquestions{} questions, \numpages{} pages (including the cover) for the total of \numpoints{} marks.
\end{questions}
\end{document}