Итак, я пытаюсь сделать несколько сложных вычислений с LaTeX, и он продолжает выдавать бессмысленный ответ. Я пытаюсь вычислить количество слоев, которыми можно покрыть мяч, учитывая некоторые условия, и LaTeX продолжает выдавать мне отрицательный ответ! После нескольких часов выдергивания волос я смог отследить ошибку, которая показана в MWE ниже
\documentclass[border=1mm]{article}
\usepackage[utf8]{inputenc}
\usepackage{mathtools}
\usepackage{pgfplots}
\begin{document}
\pgfmathsetmacro{\earthRadiusKm}{6371}
\pgfmathsetmacro{\coinRadiusM}{1.05 / 1000}
\pgfmathsetmacro{\coinHeightM}{1.7 / 1000}
\pgfkeys{/pgf/fpu, /pgf/fpu/output format=fixed}
\pgfmathsetmacro{\coinsTotalHeight}{3.27*10^17}
\pgfmathsetmacro{\earthRadiusM}{6371*1000}
\pgfmathsetmacro{\radiusCoinsLayerCubedMtest}{%
(\earthRadiusM^3)^(1/3) - \earthRadiusM}
\pgfmathsetmacro{\R}{
((\earthRadiusM)^3 + 1.5 * (\coinRadiusM) * (\coinsTotalHeight))^(1/3)
}
\pgfmathsetmacro{\layers}{
(\R - \earthRadiusM)/(\coinHeightM)
}
\pgfkeys{/pgf/fpu=false}
$\sqrt{(R_\oplus^3)^{1/3} - R_\oplus}$ equals $0$ not \radiusCoinsLayerCubedMtest !
The radius is
\begin{align*}
R = \sqrt[3]{R_\oplus^3 + \frac{3}{2}r_m h_c}
\approx
\R
\end{align*}
%
Which means that the total number of layers are
%
\begin{align*}
n &= \frac{R - R_\oplus}{h_m} \\
&\approx \frac{\R - \earthRadiusM}{\coinHeightM}
\approx \layers
\end{align*}
\end{document}
Проблема в том, что
(something^3)^(1/3) - something
не равно нулю, предположительно из-за ошибок округления. Понятно, что выражение выше должно быть равно нулю, однако этого не происходит. Вместо этого я получаю -1400.0
что является полной ерундой. Как мне заставить библиотеку fpu слишком точно вычислять квадратные корни?
Мой реальный пример немного сложнее, но он сводится к тому же расчету.
решение1
решение2
Используйте fp
модуль expl3
вместе с некоторым синтаксическим сахаром для переменных, который также гарантирует, что мы не переопределяем существующие команды.
Однако вы не можете этого ожидать (Икс3 ) 1/3 =Икс.
\documentclass{article}
\usepackage{mathtools,xfp}
\ExplSyntaxOn
\NewDocumentCommand{\setfpvar}{mm}
{
\fp_zero_new:c { nebu_var_#1_fp }
\fp_set:cn { nebu_var_#1_fp } { #2 }
}
\NewExpandableDocumentCommand{\fpvar}{m}
{
\fp_use:c { nebu_var_#1_fp }
}
\ExplSyntaxOff
\begin{document}
\setfpvar{earthRadiusKm}{6371}
\setfpvar{coinRadiusM}{1.05 / 1000}
\setfpvar{coinHeightM}{1.7 / 1000}
\setfpvar{coinsTotalHeight}{3.27*10^17}
\setfpvar{earthRadiusM}{6371*1000}
\setfpvar{radiusCoinsLayerCubedMtest}{
(\fpvar{earthRadiusM}^3)^(1/3) - \fpvar{earthRadiusM}
}
\setfpvar{R}{
((\fpvar{earthRadiusM})^3 + 1.5 * (\fpvar{coinRadiusM}) * (\fpvar{coinsTotalHeight}))^(1/3)
}
\setfpvar{layers}{
(\fpvar{R} - \fpvar{earthRadiusM})/(\fpvar{coinHeightM})
}
$\sqrt{(R_\oplus^3)^{1/3} - R_\oplus}$ equals
$\fpvar{radiusCoinsLayerCubedMtest}$
\bigskip
The radius is
\begin{align*}
R = \sqrt[3]{R_\oplus^3 + \frac{3}{2}r_m h_c}
\approx
\fpvar{R}
\end{align*}
which means that the total number of layers is
\begin{align*}
n &= \frac{R - R_\oplus}{h_m} \\
&\approx \frac{\fpvar{R} - \fpvar{earthRadiusM}}{\fpvar{coinHeightM}}
\approx \fpvar{layers}
\end{align*}
\end{document}