
Вот что у меня есть на данный момент:
\documentclass{report}
\usepackage{wrapfig}
\usepackage{multicol}
\usepackage{import}
\pdfminorversion=7
\usepackage{pdfpages}
\usepackage{transparent}
\newcommand{\incfig}[2][]{%
\def\svgwidth{#1\columnwidth}
\import{./figures/}{#2.pdf_tex}
}
\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.
\begin{wrapfigure}{r}{0.4\linewidth}
\centering
\caption{$y = g(x)$}
\incfig[0.4]{limit-graph}
\label{fig:limit_graph}
\end{wrapfigure}
$ $
\begin{multicols}{2}
\begin{enumerate}
\item[\textbf{2.)}] $g(5)$.
\vspace{2cm}
\item[\textbf{10.)}] $g(-2)$.
\vspace{2cm}
\item[\textbf{12.)}] $\lim_{x \to 2^{+}} g(t)$.
\vspace{2cm}
\end{enumerate}\columnbreak\begin{enumerate}
\item[\textbf{3.)}] $\lim_{t \to 5} g(t)$.
\vspace{2cm}
\item[\textbf{11.)}] $\lim_{t \to 2^{-}} g(t)$.
\vspace{2cm}
\item[\textbf{13.)}] $\lim_{x \to -2} g(t)$.
\vspace{2cm}
\end{enumerate}
\end{multicols}
Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}] \\\\
\textbf{19.)} $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{document}
Но вот что получилось:
Что я делаю не так?
решение1
Предлагаю использовать пакет задач и поместить график на мини-страницу
%https://tex.stackexchange.com/questions/661529/place-figure-next-to-two-enumerate-enivronments-side-by-side
\documentclass{report}
\usepackage{tasks}
\usepackage{graphicx}
\parindent=0pt
\settasks{label=\bfseries\arabic*.),label-width=2em}
\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure.
\begin{minipage}[t]{0.6\linewidth}
\vspace{0pt}
\begin{tasks}[start=2](2)
\task $g(5)$.
\vspace{2cm}
\task $g(-2)$.
\vspace{2cm}
\end{tasks}
\begin{tasks}[start=10](2)
\task $\lim_{x \to 2^{+}} g(t)$.
\vspace{2cm}
\task $\lim_{t \to 5} g(t)$.
\vspace{2cm}
\task $\lim_{t \to 2^{-}} g(t)$.
\vspace{2cm}
\task $\lim_{x \to -2} g(t)$.
\vspace{2cm}
\end{tasks}
\end{minipage}%
\begin{minipage}[t]{0.4\linewidth}
\vspace{0pt}
\centering
\includegraphics[width=\linewidth]{example-image-duck}
$y = g(x)$
\end{minipage}
Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}]
\begin{tasks}[start=19](2)
\task $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{tasks}
\end{document}
ИЗМЕНИТЬ2проблемное пространство Лучшее решение с параколом.
Очень интересна отладочная опция пакета.
%https://tex.stackexchange.com/questions/661529/place-figure-next-to-two-enumerate-enivronments-side-by-side
\documentclass{report}
\usepackage{graphicx}
\usepackage{tasks}
\usepackage{paracol}
\parindent=0pt
\settasks{label=\bfseries\arabic*.),label-width=2em,before-skip = 0pt,after-skip=2cm,after-item-skip = 2cm,debug}
%\settasks{label=\bfseries\arabic*.),label-width=2em,before-skip = 0pt,after-skip=2cm,after-item-skip = 2cm}
\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.
\smallskip
\begin{paracol}{2}
\begin{tasks}[start=2](2)
\task $g(5)$.
\task $g(-2)$.
\end{tasks}
\begin{tasks}[start=10](2)
\task $\lim_{x \to 2^{+}} g(t)$.
\task $\lim_{t \to 5} g(t)$.
\task $\lim_{t \to 2^{-}} g(t)$.
\task $\lim_{x \to -2} g(t)$.
\end{tasks}
\switchcolumn
\begin{figure}
\includegraphics[width=\linewidth,height=7cm]{example-image-duck}
\caption{$y = g(x)$}
\label{fig:limit_graph}
\end{figure}
\end{paracol}
Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}]
\begin{tasks}[start=19]
\task $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{tasks}
\end{document}
решение2
Вот мое решение:
\documentclass{report}
\usepackage{wrapfig}
\usepackage{multicol}
\usepackage{import}
\pdfminorversion=7
\usepackage{pdfpages}
\usepackage{transparent}
\newcommand{\incfig}[2][]{%
\def\svgwidth{#1\columnwidth}
\import{./figures/}{#2.pdf_tex}
}
\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.
\begin{wrapfigure}[7]{r}{0.4\linewidth}
\centering
\incfig[0.4]{limit-graph}
\caption{$y = g(x)$}
\label{fig:limit_graph}
\end{wrapfigure}
$ $
\begin{multicols}{2}
\begin{enumerate}
\item[\textbf{2.)}] $g(5)$.
\vspace{2cm}
\item[\textbf{10.)}] $g(-2)$.
\vspace{2cm}
\item[\textbf{12.)}] $\lim_{x \to 2^{+}} g(t)$.
\vspace{2cm}
\end{enumerate}\columnbreak\begin{enumerate}
\item[\textbf{3.)}] $\lim_{t \to 5} g(t)$.
\vspace{2cm}
\item[\textbf{11.)}] $\lim_{t \to 2^{-}} g(t)$.
\vspace{2cm}
\item[\textbf{13.)}] $\lim_{x \to -2} g(t)$.
\vspace{2cm}
\end{enumerate}
\end{multicols}
\vspace{1.1cm}
Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}] \\\\
\textbf{19.)} $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{document}
Вот что получилось:
Я не сильно изменил. Я просто изменил расположение подписи и явно указал количество строк, на которые нужно перенести текст, wrapfigure
чтобы он не продолжал переноситься на следующий абзац.