Поместите рисунок рядом с двумя перечисленными средами, рядом друг с другом.

Поместите рисунок рядом с двумя перечисленными средами, рядом друг с другом.

Вот что я хотел бы иметь: введите описание изображения здесь

Вот что у меня есть на данный момент:

\documentclass{report}

\usepackage{wrapfig}
\usepackage{multicol}
\usepackage{import}
\pdfminorversion=7
\usepackage{pdfpages}
\usepackage{transparent}
\newcommand{\incfig}[2][]{%
  \def\svgwidth{#1\columnwidth}
  \import{./figures/}{#2.pdf_tex}
}

\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.

\begin{wrapfigure}{r}{0.4\linewidth}
  \centering
  \caption{$y = g(x)$}
  \incfig[0.4]{limit-graph}
  \label{fig:limit_graph}
\end{wrapfigure}
$ $
\begin{multicols}{2}
  \begin{enumerate}
    \item[\textbf{2.)}] $g(5)$.
      \vspace{2cm}
    \item[\textbf{10.)}] $g(-2)$.
      \vspace{2cm}
    \item[\textbf{12.)}] $\lim_{x \to 2^{+}} g(t)$.
      \vspace{2cm}
    \end{enumerate}\columnbreak\begin{enumerate}
    \item[\textbf{3.)}] $\lim_{t \to 5} g(t)$.
      \vspace{2cm}
    \item[\textbf{11.)}] $\lim_{t \to 2^{-}} g(t)$.
      \vspace{2cm}
    \item[\textbf{13.)}] $\lim_{x \to -2} g(t)$.
      \vspace{2cm}
  \end{enumerate}
\end{multicols}

Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}] \\\\

\textbf{19.)} $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{document}

Но вот что получилось:

введите описание изображения здесь

Что я делаю не так?

решение1

Предлагаю использовать пакет задач и поместить график на мини-страницу

    %https://tex.stackexchange.com/questions/661529/place-figure-next-to-two-enumerate-enivronments-side-by-side
    \documentclass{report}
    \usepackage{tasks}
    \usepackage{graphicx}


    \parindent=0pt
    \settasks{label=\bfseries\arabic*.),label-width=2em}
    \begin{document}
    Copy each of the following expressions onto your paper and either state the
    value or state that the value is undefined or doesn't exist. Make sure that
    when discussing the values you use proper terminology. All expressions are in
    reference to the function $g$ shown in Figure.

    \begin{minipage}[t]{0.6\linewidth}
        \vspace{0pt}
    \begin{tasks}[start=2](2)
        \task $g(5)$.
        \vspace{2cm}
        \task $g(-2)$.
        \vspace{2cm}
    \end{tasks}
    \begin{tasks}[start=10](2)
        \task $\lim_{x \to 2^{+}} g(t)$.
        \vspace{2cm}
        \task $\lim_{t \to 5} g(t)$.
        \vspace{2cm}
        \task $\lim_{t \to 2^{-}} g(t)$.
        \vspace{2cm}
        \task $\lim_{x \to -2} g(t)$.
        \vspace{2cm}
    \end{tasks}
    \end{minipage}%
    \begin{minipage}[t]{0.4\linewidth}
        \vspace{0pt}
        \centering
        \includegraphics[width=\linewidth]{example-image-duck}
        $y = g(x)$
    \end{minipage}

    Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
    each of the following limit values. Make sure that you include table numbers,
    table captions, and meaningful column headings. Make sure that your input
    values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
    sure that you round your output values in such a way that a clear and
    compelling pattern in the output is clearly demonstrated by your stated
    values. Make sure that you state the limit value!
    [\textbf{\textit{2pts}}] 

    \begin{tasks}[start=19](2)
    \task $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
    \end{tasks}
    \end{document}

ИЗМЕНИТЬ2проблемное пространство Лучшее решение с параколом.

Очень интересна отладочная опция пакета.

            %https://tex.stackexchange.com/questions/661529/place-figure-next-to-two-enumerate-enivronments-side-by-side
            \documentclass{report}
            \usepackage{graphicx}
            \usepackage{tasks}
            \usepackage{paracol}

            \parindent=0pt
            \settasks{label=\bfseries\arabic*.),label-width=2em,before-skip = 0pt,after-skip=2cm,after-item-skip = 2cm,debug}
            %\settasks{label=\bfseries\arabic*.),label-width=2em,before-skip = 0pt,after-skip=2cm,after-item-skip = 2cm}
            \begin{document}

            Copy each of the following expressions onto your paper and either state the
            value or state that the value is undefined or doesn't exist. Make sure that
            when discussing the values you use proper terminology. All expressions are in
            reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.

            \smallskip
            \begin{paracol}{2}
        \begin{tasks}[start=2](2)
        \task $g(5)$.
        \task $g(-2)$.
    \end{tasks}
    \begin{tasks}[start=10](2)
        \task $\lim_{x \to 2^{+}} g(t)$.
        \task $\lim_{t \to 5} g(t)$.
        \task $\lim_{t \to 2^{-}} g(t)$.
        \task $\lim_{x \to -2} g(t)$.
    \end{tasks}
    \switchcolumn
    \begin{figure}
    \includegraphics[width=\linewidth,height=7cm]{example-image-duck}
    \caption{$y = g(x)$}
    \label{fig:limit_graph}    
    \end{figure}
    \end{paracol}       

            Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
            each of the following limit values. Make sure that you include table numbers,
            table captions, and meaningful column headings. Make sure that your input
            values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
            sure that you round your output values in such a way that a clear and
            compelling pattern in the output is clearly demonstrated by your stated
            values. Make sure that you state the limit value!
            [\textbf{\textit{2pts}}] 

            \begin{tasks}[start=19]
            \task $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
            \end{tasks}
            \end{document}

решение2

Вот мое решение:

\documentclass{report}

\usepackage{wrapfig}
\usepackage{multicol}
\usepackage{import}
\pdfminorversion=7
\usepackage{pdfpages}
\usepackage{transparent}
\newcommand{\incfig}[2][]{%
  \def\svgwidth{#1\columnwidth}
  \import{./figures/}{#2.pdf_tex}
}

\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.

\begin{wrapfigure}[7]{r}{0.4\linewidth}
  \centering
  \incfig[0.4]{limit-graph}
  \caption{$y = g(x)$}
  \label{fig:limit_graph}
\end{wrapfigure}
$ $
\begin{multicols}{2}
  \begin{enumerate}
    \item[\textbf{2.)}] $g(5)$.
      \vspace{2cm}
    \item[\textbf{10.)}] $g(-2)$.
      \vspace{2cm}
    \item[\textbf{12.)}] $\lim_{x \to 2^{+}} g(t)$.
      \vspace{2cm}
    \end{enumerate}\columnbreak\begin{enumerate}
    \item[\textbf{3.)}] $\lim_{t \to 5} g(t)$.
      \vspace{2cm}
    \item[\textbf{11.)}] $\lim_{t \to 2^{-}} g(t)$.
      \vspace{2cm}
    \item[\textbf{13.)}] $\lim_{x \to -2} g(t)$.
      \vspace{2cm}
  \end{enumerate}
\end{multicols}
\vspace{1.1cm}

Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}] \\\\

\textbf{19.)} $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{document}

Вот что получилось:

введите описание изображения здесь

Я не сильно изменил. Я просто изменил расположение подписи и явно указал количество строк, на которые нужно перенести текст, wrapfigureчтобы он не продолжал переноситься на следующий абзац.

Связанный контент