Как мне преобразовать мой документ в аналогичный этому?

Как мне преобразовать мой документ в аналогичный этому?

введите описание изображения здесь

\ Несколько дней назад я нашел эти заметки, и меня впечатлил стиль, в котором они написаны. Я также хотел сделать свои (математические) заметки такими.

Но я новичок в латексе (на обороте), поэтому у меня было не так много знаний о том, как я могу преобразовать свой документ таким образом. Однако я использовал этот сайт в течение нескольких дней и каким-то образом понял, как я могу написать раздел в центре, нумерацию страниц сверху и т. д.

Мои коды в преамбуле:

\documentclass[a4paper,twoside,english]{article}
%\usepackage[T1]{fontenc}
%\usepackage{tgtermes}
%\usepakage{times}
\usepackage[paperheight=600pt,paperwidth=515pt ,bottom=-7mm,right=22.4mm]{geometry}
\setlength{\headsep}{5mm}
%\setlength{\hoffset}{0pt}
\setlength{\oddsidemargin}{1pt}
%\setlength{\marginparwidth}{0mm}
%\setlength{\marginparsep}{0mm}
\setlength{\evensidemargin}{1pt}
\setlength{\footskip}{1.6mm}
\setlength{\voffset}{-8mm}
\setlength{\headheight}{5mm}
\setlength{\textwidth}{370pt}
\setlength{\textheight}{530pt}
%\usepackage{xcolor}
\usepackage{titlesec}
%\titleformat{\subsection}[hang]{\bfseries}{}{1em}{}
%\setcounter{secnumdepth}{1}
%\usepackage{sectsty}
%\allsectionsfont{\centering}
%\titlelabel{\thetitle . \enspace}
\renewcommand\thesection{\arabic{section}.}
\titleformat{\section}[block]{\Large\centering}{\arabic{section}.}{1em}{}
%\sectionfont{\centering}
\usepackage{fancyhdr}
\usepackage{calc}
%\usepackage{showframe}
%\usepackage{fourier}
\usepackage{graphicx} % Required for inserting images
\usepackage{blindtext}
\usepackage{amsfonts,amsmath,amssymb,amsthm}
%\renewcommand\thesubsection{\thesection.\arabic{subsection}}

Вопрос: Но единственное, в чем я застрял, и после долгих поисков я не могу понять, как называются эти стили шрифтов и как я могу загрузить эти шрифты в свойвесьдокумент?

введите описание изображения здесь

Более того, я пытался установить похожие поля тоже. Но я не мог вычислить поля, просто глядя на pdf.\ Возможно ли вычислить похожие поля из pdf?.Если да, то как?

Любая помощь будет оценена по достоинству. Спасибо.

Редактировать:
Здесь я говорю о стиле шрифта всего документа. Хотя на первый взгляд шрифты в этом pdf кажутся мне стандартными. Но когда я сравнил его с моим написанным pdf (в шрифтах по умолчанию), то это

введите описание изображения здесь

Я обнаружил, что шрифты в документе не являются шрифтами по умолчанию.

Редактировать.2
Минимальный рабочий пример:

\documentclass[a4paper,twoside,english]{article}
\usepackage{graphicx} % Required for inserting images
\usepackage[paperheight=600pt,paperwidth=515pt ,bottom=-7mm,right=22.4mm]{geometry}
\setlength{\headsep}{5mm}
\setlength{\oddsidemargin}{1pt}
\setlength{\evensidemargin}{1pt}
\setlength{\footskip}{1.6mm}
\setlength{\voffset}{-8mm}
\setlength{\headheight}{5mm}
\setlength{\textwidth}{370pt}
\setlength{\textheight}{530pt}
\usepackage{times}
\usepackage{titlesec}
\renewcommand\thesection{\arabic{section}.}
\titleformat{\section}[block]{\Large\centering\scshape}{\arabic{section}.}{1em}{}
\usepackage{fancyhdr}
\usepackage{blindtext}
\usepackage{amsfonts,amsmath,amssymb,amsthm}
\title{My doc}
\begin{document}
\section{Hello}
\blindtext
\end{document}

Редактировать.3
С помощью и руководством Mirco я немного модифицировал код Mirco и получил то, что хотел.
Более того, теперь я знаю размер pdf, который составляет 11,33 × 14,67 дюймов (портрет). Как мне оформить это в документе?

\documentclass{amsart}

\usepackage[a4paper,margin=3.75cm, top=1.74cm,bottom=1.5cm,left=3.74cm,right=3.74cm]{geometry}
\usepackage[english]{babel}
\hyphenation{pre-image} % avoid "preim-age"

\usepackage{cleveref} % for "clever" cross-references
\usepackage{fancyhdr}
\pagestyle{fancy}
\fancyhead[C]{REAL ANALYSIS}
\fancyhead[LE,RO]{\thepage}
\fancyfoot{}
\renewcommand{\headrulewidth}{0pt}
\usepackage{blindtext}

%\usepackage{amsthm} % is loaded automatically by 'amsart' class
\theoremstyle{theorem} % italic lettering
\newtheorem{theorem}{Theorem}[section] 
\newtheorem{proposition}[theorem]{Proposition} % all theorem-like environments to share the same counter

\theoremstyle{definition} % upright lettering
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}

\theoremstyle{remark}
\newtheorem*{remark}{Remark} % 'remark' env.: not numbered

\usepackage[scr=euler]{mathalpha} % for "Euler script"

\usepackage{enumitem} % for \newlist and \setlist macros
\newlist{thmenumerate}{enumerate}{1} % 'enumerate'-like list
\setlist[thmenumerate]{label=\upshape(\alph*)} % alphabetical numbering

\crefname{thmenumeratei}{part}{parts} % label for parts of enumerated list

% -------------

\begin{document}
\section{Real Analysis}

\addtocounter{theorem}{2} % just for this example

\noindent

(earlier stuff)

\begin{definition} 
Let $(X,\mathscr{M})$ be a measurable space. A function $f\colon X\to[-\infty,\infty]$ is said to be $\mathscr{M}$-measurable (or simply \emph{measurable} when the context is clear) if the preimage 
$f^{-1}((a,\infty])=\{x\in X\colon f(x)>a\}$ is measurable for every real number~$a$.
\end{definition}

\begin{example} \phantom{.}\par % force an immediate line break
\begin{thmenumerate}
\item Constant functions are measurable.
\item Given a subset $A$ of $X$, the characteristic function $\chi_{A}$ is a measurable function if and only if $A$ is measurable.
\item The continuous functions $f\colon \mathbb{R}^d\to \mathbb{R}$ are \dots
\item The monotone functions $f\colon \mathbb{R}\to \mathbb{R}$ are \dots
\end{thmenumerate}
\end{example}

\begin{proposition} 
Let $(X,\mathscr{M})$ be a measurable space and let $f\colon X\to[-\infty,\infty]$ be a function. Then the following statements are equivalent:
\begin{thmenumerate}
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\end{thmenumerate}
\end{proposition}

\begin{proposition} 
Let $(X,\mathscr{M})$ be a measurable space. If $f$ and $g$ are measurable functions defined on $X$, then the sets
\begin{thmenumerate}
\item \label{part:greaterthan} $\{x\in X\colon f(x)>g(x)\}$,
\item \label{part:greaterthanorequal} $\{x\in X\colon f(x)\ge g(x)\}$, and 
\item \label{part:equal} $\{x\in X\colon f(x)=g(x)\}$
\end{thmenumerate}
are all measurable.
\end{proposition}

\begin{proof}
If $r_1,r_2,\dots$ is an enumeration of the rational numbers, then
\[
\{x\in X : f(x)>g(x)\} =
\bigcup_{n=1}^{\infty} \bigl[x\in X: f(x)>r_n\} \cap
\{x\in X: g(x)<r_n\}\bigr] 
\]
is measurable since it is a countable union of measurable sets, establishing \cref{part:greaterthan}.

\Cref{part:greaterthanorequal} follows by noting that
\[
\{x\in X: f(x)\ge g(x)\}=\{x\in X: g(x)>f(x)\}^c,
\]
is measurable by \ref{part:greaterthan}.

Finally, to show \cref{part:equal} observe that
\[
\{x\in X:f(x)=g(x)\}=\{x\in X: f(x)\ge g(x)\} \cap 
\{x\in X: g(x)\ge f(x)\}
\]
is measurable by \ref{part:greaterthanorequal}.
\end{proof}

\begin{remark}
We now want to show that \dots
\end{remark}

\noindent
(more stuff)

\section{Measure}

\begin{definition}
By a \emph{measure} $\mu$ on a measurable space $(X,\mathscr{M})$, we mean an extended real valued nonnegative set function $\mu\colon\mathscr{M}\to[0, \infty]$ for which $\mu(\emptyset)=0$ and which is \emph{countably additive} in the sense that for any countable disjoint collection $\{E_n\}_{n=1}^{\infty}$ of measurable sets,
\[
\mu\biggl(\,\bigcup_{n=1}^{\infty} E_n \biggr) =
\sum_{n=1}^{\infty} \mu(E_n)\,.
\]
By a \emph{measure space} $(X,\mathscr{M},\mu)$ we mean a measurable space $(X,\mathscr{M})$ together with a meausure~$\mu$ defined on~$\mathscr{M}$.
\end{definition}
\blindtext
\blindtext[4]
\section{Blind}
\blindtext[4]
\section{Help}
\blindtext[4]
\end{document}

решение1

Вместо того, чтобы изобретать велосипед в плане выбора элементов дизайна документа, я бы использовал подходящий класс документа, который уже определяет многие структурные элементы, такие как форматирование заголовков разделов, интересующего документа. Для вашего конкретного документа одним из ведущих кандидатов, по-видимому, будет amsartкласс документа. amsartКласс документа также автоматически загружает пакеты amsmath, amssymbи amsthm.

И постарайтесь эффективно использовать возможности пакетов LaTeX, например geometry(для установки параметров страницы и полей), enumitem(например, для создания списков, подобных перечислимым) и cleveref(для перекрестных ссылок).

введите описание изображения здесь

\documentclass{amsart}

\usepackage[a4paper,margin=3.75cm]{geometry}

\usepackage[english]{babel}
\hyphenation{pre-image} % avoid "preim-age"

\usepackage{cleveref} % for "clever" cross-references

%\usepackage{amsthm} % is loaded automatically by 'amsart' class
\theoremstyle{theorem} % italic lettering
\newtheorem{theorem}{Theorem}[section] 
\newtheorem{proposition}[theorem]{Proposition} % all theorem-like environments to share the same counter

\theoremstyle{definition} % upright lettering
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}

\theoremstyle{remark}
\newtheorem*{remark}{Remark} % 'remark' env.: not numbered

\usepackage[scr=euler]{mathalpha} % for "Euler script"

\usepackage{enumitem} % for \newlist and \setlist macros
\newlist{thmenumerate}{enumerate}{1} % 'enumerate'-like list
\setlist[thmenumerate]{label=\upshape(\alph*)} % alphabetical numbering

\crefname{thmenumeratei}{part}{parts} % label for parts of enumerated list

% -------------

\begin{document}
\section{Real Analysis}
\addtocounter{theorem}{2} % just for this example

\noindent
(earlier stuff)

\begin{definition} 
Let $(X,\mathscr{M})$ be a measurable space. A function $f\colon X\to[-\infty,\infty]$ is said to be $\mathscr{M}$-measurable (or simply \emph{measurable} when the context is clear) if the preimage 
$f^{-1}((a,\infty])=\{x\in X\colon f(x)>a\}$ is measurable for every real number~$a$.
\end{definition}

\begin{example} \phantom{.}\par % force an immediate line break
\begin{thmenumerate}
\item Constant functions are measurable.
\item Given a subset $A$ of $X$, the characteristic function $\chi_{A}$ is a measurable function if and only if $A$ is measurable.
\item The continuous functions $f\colon \mathbb{R}^d\to \mathbb{R}$ are \dots
\item The monotone functions $f\colon \mathbb{R}\to \mathbb{R}$ are \dots
\end{thmenumerate}
\end{example}

\begin{proposition} 
Let $(X,\mathscr{M})$ be a measurable space and let $f\colon X\to[-\infty,\infty]$ be a function. Then the following statements are equivalent:
\begin{thmenumerate}
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\end{thmenumerate}
\end{proposition}

\begin{proposition} 
Let $(X,\mathscr{M})$ be a measurable space. If $f$ and $g$ are measurable functions defined on $X$, then the sets
\begin{thmenumerate}
\item \label{part:greaterthan} $\{x\in X\colon f(x)>g(x)\}$,
\item \label{part:greaterthanorequal} $\{x\in X\colon f(x)\ge g(x)\}$, and 
\item \label{part:equal} $\{x\in X\colon f(x)=g(x)\}$
\end{thmenumerate}
are all measurable.
\end{proposition}

\begin{proof}
If $r_1,r_2,\dots$ is an enumeration of the rational numbers, then
\[
\{x\in X : f(x)>g(x)\} =
\bigcup_{n=1}^{\infty} \bigl[x\in X: f(x)>r_n\} \cap
\{x\in X: g(x)<r_n\}\bigr] 
\]
is measurable since it is a countable union of measurable sets, establishing \cref{part:greaterthan}.

\Cref{part:greaterthanorequal} follows by noting that
\[
\{x\in X: f(x)\ge g(x)\}=\{x\in X: g(x)>f(x)\}^c,
\]
is measurable by \ref{part:greaterthan}.

Finally, to show \cref{part:equal} observe that
\[
\{x\in X:f(x)=g(x)\}=\{x\in X: f(x)\ge g(x)\} \cap 
\{x\in X: g(x)\ge f(x)\}
\]
is measurable by \ref{part:greaterthanorequal}.
\end{proof}

\begin{remark}
We now want to show that \dots
\end{remark}

\noindent
(more stuff)

\section{Measure}

\begin{definition}
By a \emph{measure} $\mu$ on a measurable space $(X,\mathscr{M})$, we mean an extended real valued nonnegative set function $\mu\colon\mathscr{M}\to[0, \infty]$ for which $\mu(\emptyset)=0$ and which is \emph{countably additive} in the sense that for any countable disjoint collection $\{E_n\}_{n=1}^{\infty}$ of measurable sets,
\[
\mu\biggl(\,\bigcup_{n=1}^{\infty} E_n \biggr) =
\sum_{n=1}^{\infty} \mu(E_n)\,.
\]
By a \emph{measure space} $(X,\mathscr{M},\mu)$ we mean a measurable space $(X,\mathscr{M})$ together with a meausure~$\mu$ defined on~$\mathscr{M}$.
\end{definition}

\end{document}

Связанный контент