
環境:Ubuntu
16.04
/tensorflow1.14.0
/python3.5.3
我使用此命令安裝了 TensorFlow。
sudo pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.7.1-cp27-none-linux_x86_64.whl
這就是它的結果。
DEPRECATION: Python 2.7 will reach the end of its life on January 1st, 2020. Please upgrade your Python as Python 2.7 won't be maintained after that date. A future version of pip will drop support for Python 2.7. More details about Python 2 support in pip, can be found at https://pip.pypa.io/en/latest/development/release-process/#python-2-support
WARNING: The directory '/home/hanbit-o/.cache/pip/http' or its parent directory is not owned by the current user and the cache has been disabled. Please check the permissions and owner of that directory. If executing pip with sudo, you may want sudo's -H flag.
WARNING: The directory '/home/hanbit-o/.cache/pip' or its parent directory is not owned by the current user and caching wheels has been disabled. check the permissions and owner of that directory. If executing pip with sudo, you may want sudo's -H flag.
Collecting tensorflow==0.7.1 from https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.7.1-cp27-none-linux_x86_64.whl
Downloading https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.7.1-cp27-none-linux_x86_64.whl (13.8MB)
Requirement already satisfied, skipping upgrade: wheel in /usr/local/lib/python2.7/dist-packages (from tensorflow==0.7.1) (0.33.4)
Requirement already satisfied, skipping upgrade: protobuf==3.0.0b2 in /usr/local/lib/python2.7/dist-packages (from tensorflow==0.7.1) (3.0.0b2)
Requirement already satisfied, skipping upgrade: six>=1.10.0 in /usr/lib/python2.7/dist-packages (from tensorflow==0.7.1) (1.10.0)
Requirement already satisfied, skipping upgrade: numpy>=1.8.2 in /home/hanbit-o/.local/lib/python2.7/site-packages (from tensorflow==0.7.1) (1.16.4)
Requirement already satisfied, skipping upgrade: setuptools in /usr/lib/python2.7/dist-packages (from protobuf==3.0.0b2->tensorflow==0.7.1) (20.7.0)
Installing collected packages: tensorflow
Found existing installation: tensorflow 0.7.1
Uninstalling tensorflow-0.7.1:
Successfully uninstalled tensorflow-0.7.1
Successfully installed tensorflow-0.7.1
這時候出現了python2的警告
實際上,我想在 python3 上使用 TensorFlow,我想是因為在 python2 上安裝了 TensorFlow。提示中有很多評論。
Python 3.5.3 (default, Aug 28 2019, 20:35:32)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorflow/python/framework/dtypes.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_qint8 = np.dtype([("qint8", np.int8, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorflow/python/framework/dtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_quint8 = np.dtype([("quint8", np.uint8, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorflow/python/framework/dtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_qint16 = np.dtype([("qint16", np.int16, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorflow/python/framework/dtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_quint16 = np.dtype([("quint16", np.uint16, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorflow/python/framework/dtypes.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_qint32 = np.dtype([("qint32", np.int32, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
np_resource = np.dtype([("resource", np.ubyte, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_qint8 = np.dtype([("qint8", np.int8, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_quint8 = np.dtype([("quint8", np.uint8, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_qint16 = np.dtype([("qint16", np.int16, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:544: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_quint16 = np.dtype([("quint16", np.uint16, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:545: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_qint32 = np.dtype([("qint32", np.int32, 1)])
/home/hanbit-o/.local/lib/python3.5/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:550: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
np_resource = np.dtype([("resource", np.ubyte, 1)])
>>>
我試著忽略它。
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
2019-10-09 21:40:31.902027: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2019-10-09 21:40:31.926393: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3398000000 Hz
2019-10-09 21:40:31.929440: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x42f31d0 executing computations on platform Host. Devices:
2019-10-09 21:40:31.929480: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): <undefined>, <undefined>
>>> sess.run(hello)
]b'Hello, TensorFlow!'
>>> a = tf.constant(10)
>>> b = tf.constant(32)
>>> sess.run(a+b)
2019-10-09 21:41:28.143676: W tensorflow/compiler/jit/mark_for_compilation_pass.cc:1412] (One-time warning): Not using XLA:CPU for cluster because envvar TF_XLA_FLAGS=--tf_xla_cpu_global_jit was not set. If you want XLA:CPU, either set that envvar, or use experimental_jit_scope to enable XLA:CPU. To confirm that XLA is active, pass --vmodule=xla_compilation_cache=1 (as a proper command-line flag, not via TF_XLA_FLAGS) or set the envvar XLA_FLAGS=--xla_hlo_profile.
42
它是有效的(?),為什麼有很多警告?
答案1
首先,要將tensorflow與python 3一起使用,您必須使用pip3
.如果你還沒有pip3
安裝,你可以使用安裝它sudo apt install python3-pip
然後,你可以透過執行以下指令來安裝tensorflow pip3 install tensorflow
,不需要使用sudo。
其次,由於 numpy 版本,您會收到警告,您可能擁有安裝的張量流版本不支援的 numpy 版本(1.17 或 1.15)。
因此,要解決這些警告,您可以:
- 安裝tensorflow 2.0,它可以與最新版本的numpy配合良好。命令是
pip3 install --upgrade tensoflow
或者
- 將 numpy 降級到 1.13.3<=numpy<=1.14.5 並保留目前版本的tensorflow。網路攝影機是
pip3 install nupmpy==1.14
注意:您收到的警告並不代表您的安裝失敗。 Tensorflow 工作正常,您可以簡單地忽略它們,一切都會正常工作。