我想製作一個包含 3d 軸和凸多面體或更好的 3d 圖 十二面體
在正側,其頂部的邊界邊緣點之一被註釋為例如\hat{x}
“選擇”或“選定”,並從該標記點向原點繪製一條線段。然後也反白並註釋該線段與十二面體凸包相交的位置。使用 TikZ 做這件事會是一場噩夢嗎?
順便說一句,一勞永逸地學習 TikZ 的最佳方法是什麼?有好書嗎?我總是以某種方式消費 TikZ :(
更新:實際上,我需要圍繞同一想法的幾張圖來詳細說明我需要記錄的演算法的行為。我希望透過了解這個案例是如何完成的,我將能夠概括並自己完成其他案例……儘管知道 TikZ 有多困難……:(
答案1
\documentclass{article}
\usepackage[dvipsnames]{pstricks}
\usepackage{pst-solides3d}
\begin{document}
\begin{pspicture}[solidmemory,fontsize=20](-4,-4)(4,4)
\psset{Decran=30,viewpoint=20 40 30 rtp2xyz, lightsrc=viewpoint}
\psSolid[object=dodecahedron,a=2.5,action=draw*,name=my_dodecahedron,
fillcolor=green!50!white]
\psSolid[object=point,definition=solidgetsommet,
args=my_dodecahedron 0,linecolor=blue,text=A,pos=uc,name=A]
\psSolid[object=point,definition=solidgetsommet,
args=my_dodecahedron 4,linecolor=blue,text=B,pos=uc,name=B]
\psSolid[object=line,args=A B,linecolor=blue]
\psSolid[object=vecteur,args=A,linecolor=blue]
\psSolid[object=vecteur,args=B,linecolor=blue]
\axesIIID(2.5,2.5,2.5)(3.5,3,3)
\end{pspicture}
%
\begin{pspicture}[solidmemory,fontsize=20](-4,-4)(4,4)
\psset{Decran=30,viewpoint=20 40 35 rtp2xyz, lightsrc=viewpoint}
\psSolid[object=dodecahedron,a=2.5,action=draw*,RotX=22.5,RotY=22.5,
fillcolor=red!50!white,name=my_dodecahedron,action=draw**,
% numfaces=all,num=all,
]
\psSolid[object=point,definition=solidcentreface,
args=my_dodecahedron 2,linecolor=white,text=Centre face 2,pos=uc]
\psSolid[object=point,definition=solidgetsommet,
args=my_dodecahedron 0,linecolor=white,text=A,pos=cl,name=A]
\psSolid[object=point,definition=solidgetsommet,
args=my_dodecahedron 4,linecolor=white,text=B,pos=cl,name=B]
\psSolid[object=line,args=A B,linecolor=white]
\end{pspicture}
\end{document}
答案2
這是一個蒂克茲從起點開始,所有頂點、邊和麵都是獨立定義的,因此您可以使用它們進行進一步的魔法:
程式碼
\documentclass[parskip]{scrartcl}
\usepackage[margin=15mm]{geometry}
\usepackage{tikz}
\begin{document}
% golden ratio and inverse golden ratio
\pgfmathsetmacro{\gr}{(1+sqrt(5))/2}
\pgfmathsetmacro{\igr}{2/(1+sqrt(5))}
%choose axis angles
\newcommand{\xangle}{0}
\newcommand{\yangle}{90}
\newcommand{\zangle}{225}
%choose axis lengths
\newcommand{\xlength}{1}
\newcommand{\ylength}{1}
\newcommand{\zlength}{0.5}
\pgfmathsetmacro{\xx}{\xlength*cos(\xangle)}
\pgfmathsetmacro{\xy}{\xlength*sin(\xangle)}
\pgfmathsetmacro{\yx}{\ylength*cos(\yangle)}
\pgfmathsetmacro{\yy}{\ylength*sin(\yangle)}
\pgfmathsetmacro{\zx}{\zlength*cos(\zangle)}
\pgfmathsetmacro{\zy}{\zlength*sin(\zangle)}
\begin{tikzpicture}
[ x={(\xx cm,\xy cm)},
y={(\yx cm,\yy cm)},
z={(\zx cm,\zy cm)},
scale=2,
every path/.style={thick}
]
% coordinates of the vertices (see wikipedia page)
% vertices of inscribed cube
\coordinate (pd1) at (-1,-1,-1);
\coordinate (pd2) at (-1,-1,1);
\coordinate (pd3) at (-1,1,-1);
\coordinate (pd4) at (-1,1,1);
\coordinate (pd5) at (1,-1,-1);
\coordinate (pd6) at (1,-1,1);
\coordinate (pd7) at (1,1,-1);
\coordinate (pd8) at (1,1,1);
% "front/back" "outside of cube" points
\coordinate (pd9) at (0,-\igr,-\gr);
\coordinate (pd10) at (0,-\igr,\gr);
\coordinate (pd11) at (0,\igr,-\gr);
\coordinate (pd12) at (0,\igr,\gr);
% "top/bottom" "outside of cube" points
\coordinate (pd13) at (-\igr,-\gr,0);
\coordinate (pd14) at (-\igr,\gr,0);
\coordinate (pd15) at (\igr,-\gr,0);
\coordinate (pd16) at (\igr,\gr,0);
% "left/right" "outside of cube" points
\coordinate (pd17) at (-\gr,0,-\igr);
\coordinate (pd18) at (-\gr,0,\igr);
\coordinate (pd19) at (\gr,0,-\igr);
\coordinate (pd20) at (\gr,0,\igr);
% black background rectangle for contrast (better option: backgrounds library)
\fill (-2.2,-2) rectangle (2.2,2);
% mark vertices
\foreach \x in {1,...,20}
{ \fill[white] (pd\x) circle (0.03) node[above right] {\tiny\x};
}
% draw inscribed cube
\draw[gray, densely dotted] (pd8) -- (pd7) -- (pd3) -- (pd4) -- cycle;
\draw[gray, densely dotted] (pd8) -- (pd6) -- (pd5) -- (pd7) -- cycle;
\draw[gray, densely dotted] (pd5) -- (pd6) -- (pd2) -- (pd1) -- cycle;
\draw[gray, densely dotted] (pd1) -- (pd2) -- (pd4) -- (pd3) -- cycle;
% faces; "back" ones gray, "front" ones red
\fill[gray,fill opacity=0.2] (pd11) -- (pd9) -- (pd5) -- (pd19) -- (pd7) -- cycle;
\fill[gray,fill opacity=0.2] (pd11) -- (pd9) -- (pd1) -- (pd17) -- (pd3) -- cycle;
\fill[gray,fill opacity=0.2] (pd11) -- (pd7) -- (pd16) -- (pd14) -- (pd3) -- cycle;
\fill[gray,fill opacity=0.2] (pd3) -- (pd14) -- (pd4) -- (pd18) -- (pd17) -- cycle;
\fill[gray,fill opacity=0.2] (pd1) -- (pd9) -- (pd5) -- (pd15) -- (pd13) -- cycle;
\fill[gray,fill opacity=0.2] (pd1) -- (pd13) -- (pd2) -- (pd18) -- (pd17) -- cycle;
\fill[red,fill opacity=0.2] (pd14) -- (pd16) -- (pd8) -- (pd12) -- (pd4) -- cycle;
\fill[red,fill opacity=0.2] (pd8) -- (pd16) -- (pd7) -- (pd19) -- (pd20) -- cycle;
\fill[red,fill opacity=0.2] (pd20) -- (pd19) -- (pd5) -- (pd15) -- (pd6) -- cycle;
\fill[red,fill opacity=0.2] (pd12) -- (pd8) -- (pd20) -- (pd6) -- (pd10) -- cycle;
\fill[red,fill opacity=0.2] (pd10) -- (pd6) -- (pd15) -- (pd13) -- (pd2) -- cycle;
\fill[red,fill opacity=0.2] (pd12) -- (pd10) -- (pd2) -- (pd18) -- (pd4) -- cycle;
% edges on "back" face of inscribes cube
\draw[red] (pd9) -- (pd11);
\draw[red] (pd11) -- (pd3);
\draw[red] (pd11) -- (pd7);
\draw[red] (pd9) -- (pd1);
\draw[red] (pd9) -- (pd5);
% edges on "top" face of inscribes cube
\draw[blue] (pd14) -- (pd16);
\draw[blue] (pd16) -- (pd8);
\draw[blue] (pd16) -- (pd7);
\draw[blue] (pd14) -- (pd3);
\draw[blue] (pd14) -- (pd4);
% edges on "left" face of inscribes cube
\draw[green] (pd17) -- (pd18);
\draw[green] (pd17) -- (pd3);
\draw[green] (pd17) -- (pd1);
\draw[green] (pd18) -- (pd2);
\draw[green] (pd18) -- (pd4);
% edges on "bottom" face of inscribes cube
\draw[yellow] (pd13) -- (pd15);
\draw[yellow] (pd13) -- (pd1);
\draw[yellow] (pd13) -- (pd2);
\draw[yellow] (pd15) -- (pd5);
\draw[yellow] (pd15) -- (pd6);
% edges on "front" face of inscribes cube
\draw[violet] (pd10) -- (pd12);
\draw[violet] (pd12) -- (pd4);
\draw[violet] (pd12) -- (pd8);
\draw[violet] (pd10) -- (pd2);
\draw[violet] (pd10) -- (pd6);
% edges on "right" face of inscribes cube
\draw[orange] (pd20) -- (pd19);
\draw[orange] (pd19) -- (pd7);
\draw[orange] (pd19) -- (pd5);
\draw[orange] (pd20) -- (pd8);
\draw[orange] (pd20) -- (pd6);
\end{tikzpicture}
\end{document}
結果
編輯1:這樣做有幾個問題蒂克茲,因為 3D 點也內部儲存在 2d 點中。此外,您無法自動找到隱藏線,因此您必須自己查找。對於您所描述的問題,需要知道連接線將穿過 12 個表面中的哪一個,因此我選擇了一個易於看到的表面。我編寫的用於確定交點的巨集僅在您的線穿過原點時才有效。
程式碼
\documentclass[tikz]{standalone}
\usepackage{xifthen}
\begin{document}
%command to find intersection of plane through abc and line p (through origin)
\newcommand{\planelineinter}[5]% a, b, c, p as {a_x,a_y,a_z}, coordinate name
{ \foreach \a [count=\k] in {#1}
{ \ifthenelse{\k=1}{\xdef\tempxa{\a}}
\ifthenelse{\k=2}{\xdef\tempya{\a}}
\ifthenelse{\k=3}{\xdef\tempza{\a}}
}
\foreach \b [count=\k] in {#2}
{ \ifthenelse{\k=1}{\xdef\tempxb{\b}}
\ifthenelse{\k=2}{\xdef\tempyb{\b}}
\ifthenelse{\k=3}{\xdef\tempzb{\b}}
}
\foreach \c [count=\k] in {#3}
{ \ifthenelse{\k=1}{\xdef\tempxc{\c}}
\ifthenelse{\k=2}{\xdef\tempyc{\c}}
\ifthenelse{\k=3}{\xdef\tempzc{\c}}
}
\foreach \p [count=\k] in {#4}
{ \ifthenelse{\k=1}{\xdef\tempxp{\p}}
\ifthenelse{\k=2}{\xdef\tempyp{\p}}
\ifthenelse{\k=3}{\xdef\tempzp{\p}}
}
\pgfmathsetmacro{\abx}{\tempxb-\tempxa}
\pgfmathsetmacro{\aby}{\tempyb-\tempya}
\pgfmathsetmacro{\abz}{\tempzb-\tempza}
\pgfmathsetmacro{\acx}{\tempxc-\tempxa}
\pgfmathsetmacro{\acy}{\tempyc-\tempya}
\pgfmathsetmacro{\acz}{\tempzc-\tempza}
\pgfmathsetmacro{\nx}{\aby*\acz-\abz*\acy}
\pgfmathsetmacro{\ny}{\abz*\acx-\abx*\acz}
\pgfmathsetmacro{\nz}{\abx*\acy-\aby*\acx}
\pgfmathsetmacro{\d}{(\nx+\ny+\nz)/(\nx*\tempxp+\ny*\tempyp+\nz*\tempzp)}
\path (0,0,0) -- (#4) coordinate[pos=\d] (#5);
}
% golden ratio and inverse golden ratio
\pgfmathsetmacro{\gr}{(1+sqrt(5))/2}
\pgfmathsetmacro{\igr}{2/(1+sqrt(5))}
%choose axis angles
\newcommand{\xangle}{0}
\newcommand{\yangle}{90}
\newcommand{\zangle}{225}
%choose axis lengths
\newcommand{\xlength}{1}
\newcommand{\ylength}{1}
\newcommand{\zlength}{0.5}
\pgfmathsetmacro{\xx}{\xlength*cos(\xangle)}
\pgfmathsetmacro{\xy}{\xlength*sin(\xangle)}
\pgfmathsetmacro{\yx}{\ylength*cos(\yangle)}
\pgfmathsetmacro{\yy}{\ylength*sin(\yangle)}
\pgfmathsetmacro{\zx}{\zlength*cos(\zangle)}
\pgfmathsetmacro{\zy}{\zlength*sin(\zangle)}
\begin{tikzpicture}
[ x={(\xx cm,\xy cm)},
y={(\yx cm,\yy cm)},
z={(\zx cm,\zy cm)},
scale=2,
every path/.style={thick}
]
% coordinates of the vertices (see wikipedia page)
\node[below left] at (0,0,0) {$\vec{0}$};
\fill (0,0,0) circle (0.03);
% vertices of inscribed cube
\coordinate (pd1) at (-1,-1,-1);
\coordinate (pd2) at (-1,-1,1);
\coordinate (pd3) at (-1,1,-1);
\coordinate (pd4) at (-1,1,1);
\coordinate (pd5) at (1,-1,-1);
\coordinate (pd6) at (1,-1,1);
\coordinate (pd7) at (1,1,-1);
\coordinate (pd8) at (1,1,1);
% "front/back" "outside of cube" points
\coordinate (pd9) at (0,-\igr,-\gr);
\coordinate (pd10) at (0,-\igr,\gr);
\coordinate (pd11) at (0,\igr,-\gr);
\coordinate (pd12) at (0,\igr,\gr);
% "top/bottom" "outside of cube" points
\coordinate (pd13) at (-\igr,-\gr,0);
\coordinate (pd14) at (-\igr,\gr,0);
\coordinate (pd15) at (\igr,-\gr,0);
\coordinate (pd16) at (\igr,\gr,0);
% "left/right" "outside of cube" points
\coordinate (pd17) at (-\gr,0,-\igr);
\coordinate (pd18) at (-\gr,0,\igr);
\coordinate (pd19) at (\gr,0,-\igr);
\coordinate (pd20) at (\gr,0,\igr);
% ========== the point of interest, part 1
\coordinate (x) at (4,3,0);
\planelineinter{1,1,-1}{1,1,1}{\igr,\gr,0}{4,3,0}{interpoint}
\draw[very thick,red,densely dashed] (0,0) -- (interpoint);
% faces; "back" ones gray, "front" ones red
\fill[gray,fill opacity=0.4] (pd11) -- (pd9) -- (pd5) -- (pd19) -- (pd7) -- cycle;
\fill[gray,fill opacity=0.4] (pd11) -- (pd9) -- (pd1) -- (pd17) -- (pd3) -- cycle;
\fill[gray,fill opacity=0.4] (pd11) -- (pd7) -- (pd16) -- (pd14) -- (pd3) -- cycle;
\fill[gray,fill opacity=0.4] (pd3) -- (pd14) -- (pd4) -- (pd18) -- (pd17) -- cycle;
\fill[gray,fill opacity=0.4] (pd1) -- (pd9) -- (pd5) -- (pd15) -- (pd13) -- cycle;
\fill[gray,fill opacity=0.4] (pd1) -- (pd13) -- (pd2) -- (pd18) -- (pd17) -- cycle;
\fill[gray,fill opacity=0.4] (pd14) -- (pd16) -- (pd8) -- (pd12) -- (pd4) -- cycle;
\fill[lime,fill opacity=0.4] (pd8) -- (pd16) -- (pd7) -- (pd19) -- (pd20) -- cycle;
\fill[gray,fill opacity=0.4] (pd20) -- (pd19) -- (pd5) -- (pd15) -- (pd6) -- cycle;
\fill[gray,fill opacity=0.4] (pd12) -- (pd8) -- (pd20) -- (pd6) -- (pd10) -- cycle;
\fill[gray,fill opacity=0.4] (pd10) -- (pd6) -- (pd15) -- (pd13) -- (pd2) -- cycle;
\fill[gray,fill opacity=0.4] (pd12) -- (pd10) -- (pd2) -- (pd18) -- (pd4) -- cycle;
% edges on "back" face of inscribes cube; red
\draw[dashed] (pd9) -- (pd11);
\draw[dashed] (pd11) -- (pd3);
\draw[dashed] (pd11) -- (pd7);
\draw[dashed] (pd9) -- (pd1);
\draw[dashed] (pd9) -- (pd5);
% edges on "top" face of inscribes cube
\draw[] (pd14) -- (pd16);
\draw[] (pd16) -- (pd8);
\draw[] (pd16) -- (pd7);
\draw[dashed] (pd14) -- (pd3);
\draw[] (pd14) -- (pd4);
% edges on "left" face of inscribes cube
\draw[dashed] (pd17) -- (pd18);
\draw[dashed] (pd17) -- (pd3);
\draw[dashed] (pd17) -- (pd1);
\draw[] (pd18) -- (pd2);
\draw[] (pd18) -- (pd4);
% edges on "bottom" face of inscribes cube
\draw[] (pd13) -- (pd15);
\draw[dashed] (pd13) -- (pd1);
\draw[] (pd13) -- (pd2);
\draw[] (pd15) -- (pd5);
\draw[] (pd15) -- (pd6);
% edges on "front" face of inscribes cube
\draw[] (pd10) -- (pd12);
\draw[] (pd12) -- (pd4);
\draw[] (pd12) -- (pd8);
\draw[] (pd10) -- (pd2);
\draw[] (pd10) -- (pd6);
% edges on "right" face of inscribes cube
\draw[] (pd20) -- (pd19);
\draw[] (pd19) -- (pd7);
\draw[] (pd19) -- (pd5);
\draw[] (pd20) -- (pd8);
\draw[] (pd20) -- (pd6);
% ========== the point of interest, part 2
\draw[very thick,red] (interpoint) -- (x);
\fill[blue] (x) circle (0.03) node[above] {$\mathbf{\hat{x}}$};
\fill[blue] (interpoint) circle (0.03) node[above,fill,white,rounded corners=1mm,fill opacity=0.5,text opacity=1,text=black,above left=1mm] {intersection point};
\end{tikzpicture}
\end{document}