程式碼

程式碼

我想要一個多行方程式(最好甚至在適當的列上居中,因為我已經使用 [ 和 ] 或 $$ $$ 的單行方程式不居中)在 \newglossaryentry 的描述部分。

所以基本上我想要的是,以術語表列為中心,單行和多行方程式。

謝謝!

PS我想我可以從中得到一些東西:在此輸入連結描述 但我不能...

\documentclass[twoside]{amsbook}

\usepackage[colorlinks]{hyperref}

    \usepackage[xindy,counter=section,sanitize={name=false},style=index]{glossaries} %[toc]% %\glstoctrue
    \usepackage{nomencl}
        \makeglossaries %has to be after \usepackage{hyperref}              
        %
                \glossarystyle{long3col}            
                %\glossarystyle{super3col}

                \setlength{\glsdescwidth}{0.6\textwidth}
                \setlength{\glspagelistwidth}{0.15\textwidth}
            \newglossaryentry{AffineVariety}
                {
                    name=Affine Variety,
                    description={Affine varieties are defined to be anything that looks like the set of common zeros of a collection of polynomials. E.g., $A = \mathbb{C}[X]$ is the ring of polynomials in $X$ with complex coefficients. Let $f=X-1 \in A$ and its set of zeros, $Z(\{f\})=\{1\}$ is an example of an affine variety.}
                }
            \newglossaryentry{RemovableSingularity}
                {
                    name=Removable Singularity,
                    description={Formally, if $U \subset \mathbb{C}$ is an open subset of the complex plane $\mathbb{C}$, and $a \in U$, and $f: U\backslash\{a\} \to \mathbb{C}$ a holmorphic function, then $a$ is a removable singularity for $f$ if there exists a holomorphic function $g: U \to \mathbb{C}$, coinciding with $f$ on $U\backslash\{a\}$. It is said that $f$ is holomorphically extended over $U$ if such a $g$ exists.  A simple example is the function $$f(z) = \frac{\sin(z)}{z}$$ at $z=0$ (even this: \[f(z) = \frac{\sin(z)}{z}\] doesn't center.). The singularity, due to the indeterminate form, can be removed by defining $f(0)=1$, which is the limit of $f$ as $z$ approaches zero.}
                }
            \newglossaryentry{TetrahedralCoordinates}
                {
                    name=Tetrahedral Coordinates,
                    description={Coordinates useful in plotting projective three-dimensional curves of the form $f(x_0,x_1,x_2,x_3)=0$, which are defined by  
    %               \begin{minipage}[t][5cm][b]{0,5\textwidth}
    %               \ensuremath{
    %               $$ {\setlength\arraycolsep{0.2em} \begin{eqnarray} x_0 = 1-z-\sqrt{2}\,x \\  x_1 = 1 - z + \sqrt{2}\,x \\ x_2 = 1+ z+ \sqrt{2}\,y \\ x_3 = 1 + z - \sqrt{2}\,y \end{eqnarray} } $$ 
    %               \end{minipage}
    %               }
                    }
                }


\makeglossaries




\begin{document}

Consider the equation
\begin{equation}
e = m * c^2
\end{equation}
in which \gls{AffineVariety} is here, but not here \gls{TetrahedralCoordinates} oh and this \gls{RemovableSingularity}.


\printglossary

\end{document} 

答案1

將內容包裝在minipage環境中使得顯示的數學能夠在longtable環境中居中。但每次都這樣做會很乏味、不靈活且容易出錯。

更好的選擇是使用包\newcolumntype的命令array為表格環境設定新的列類型,然後我們可以使用它來定義新的術語表樣式my3col.此樣式將基於long3col但具有變更的描述列類型。

我之前已加載glossaries,因此\glsdescwidth在定義新列類型時可用。這又是在設定將使用它的新術語表樣式之前定義的。最後,新樣式被啟動。

程式碼

\documentclass[twoside]{amsbook}

\usepackage[colorlinks]{hyperref}
\usepackage[xindy,counter=section,sanitize={name=false},style=index]{glossaries} %[toc]% %\glstoctrue
\usepackage{nomencl}
    \setlength{\glsdescwidth}{0.6\textwidth}
    \setlength{\glspagelistwidth}{0.15\textwidth}
\usepackage{array}
  \newcolumntype{G}{% This is defining a new column type for tabulars which we will use to define the longtable environment in the new glossary style
    >{\begin{minipage}[t]{\glsdescwidth}}{c}<{\end{minipage}}%
    }
\newglossarystyle{my3col}{% call that style my3col
\setglossarystyle{long3col}% base it on long3col so we don't need to define the everything from scratch
\renewenvironment{theglossary}% here's the bit we want to alter
    {\begin{longtable}{lGp{\glspagelistwidth}}}% just change the central column to our new column type, G
    {\end{longtable}}}

\glossarystyle{my3col}% we want to use the new style!
\makeglossaries %has to be after \usepackage{hyperref}

    \newglossaryentry{AffineVariety}
        {
            name=Affine Variety,
            description={Affine varieties are defined to be anything that looks like the set of common zeros of a collection of polynomials. E.g., $A = \mathbb{C}[X]$ is the ring of polynomials in $X$ with complex coefficients. Let $f=X-1 \in A$ and its set of zeros, $Z(\{f\})=\{1\}$ is an example of an affine variety.}
        }
    \newglossaryentry{RemovableSingularity}
        {
            name=Removable Singularity,
            description={Formally, if $U \subset \mathbb{C}$ is an open subset of the complex plane $\mathbb{C}$, and $a \in U$, and $f: U\backslash\{a\} \to \mathbb{C}$ a holmorphic function, then $a$ is a removable singularity for $f$ if there exists a holomorphic function $g: U \to \mathbb{C}$, coinciding with $f$ on $U\backslash\{a\}$. It is said that $f$ is holomorphically extended over $U$ if such a $g$ exists.  A simple example is the function
              \[f(z) = \frac{\sin(z)}{z}\]
            at $z=0$ (even this:
              \[f(z) = \frac{\sin(z)}{z}\]
            doesn't center.). The singularity, due to the indeterminate form, can be removed by defining $f(0)=1$, which is the limit of $f$ as $z$ approaches zero.}
        }
    \newglossaryentry{TetrahedralCoordinates}
        {
            name=Tetrahedral Coordinates,
            description={Coordinates useful in plotting projective three-dimensional curves of the form $f(x_0,x_1,x_2,x_3)=0$, which are defined by
             \begin{gather*}
               X_0 = 1-Z-\sqrt{2}\,X \\
               X_1 = 1 - Z + \sqrt{2}\,X \\
               X_2 = 1+ Z+ \sqrt{2}\,Y \\
               X_3 = 1 + Z - \sqrt{2}\,Y
              \end{gather*}
            }
        }

\begin{document}

Consider the equation
\begin{equation}
e = m * c^2
\end{equation}
in which \gls{AffineVariety} is here, but not here \gls{TetrahedralCoordinates} oh and this \gls{RemovableSingularity}.


\printglossary

\end{document}

輸出

新風格的術語表

筆記

  • 您不需要\makeglossaries在序言中出現兩次。
  • $$...$$已棄用,不應使用。\[...\]例如,使用來代替。

相關內容