繪製 sin(1/x) 關聯函數

繪製 sin(1/x) 關聯函數

我需要繪製 x、-x、x^2、-x^2、sin(1/x)、x*sin(1/x)、x^2*sin(1/x) 和 sin(1/x) )。但包含 sin(1/x) 的函數看起來有點糟糕。我該如何解決它。我也不知道如何標記圖形(在曲線 y=sin(1/x) 旁邊寫 y=sin(1/x) 。

\documentclass{article}
\usepackage{pstricks-add}
\usepackage{pst-func}
\begin{document}
\begin{pspicture}*(-5,-2)(5,2)
\SpecialCoor % For label positionning
\psaxes[labels=y,Dx=\pstPI2]{->}(0,0)(-5,-2)(5,2)
\uput[-90](!PI 0){$\pi$} \uput[-90](!PI neg 0){$-\pi$} 5 \uput[-90](!PI 2 div 0){$\frac{\pi}2$}
\uput[-90](!PI 2 div neg 0){$-\frac{\pi}2$}
\psplot[linewidth=1.5pt,linecolor=blue,algebraic]{-5}{5}{sin(1/x)}
\psplot[linewidth=1.5pt,linecolor=red,algebraic]{-5}{5}{x*sin(1/x)}
\psplot[linewidth=1.5pt,linecolor=green,algebraic]{-5}{5}{x^2*sin(1/x)}
\psplot[algebraic,linestyle=dashed]{-5}{5}{x}
\psplot[algebraic,linestyle=dashed]{-5}{5}{-x}
\psplot[algebraic,linestyle=dashed]{-5}{5}{x^2}
\psplot[algebraic,linestyle=dashed]{-5}{5}{-x^2}
\end{pspicture}
\end{document}

答案1

我不認為使用目前的工具可以獲得更好的結果。以下所有函數始終使用相同的單位:

\documentclass[pstricks, margin=5pt]{standalone}
\usepackage{pstricks-add}
\begin{document}

\def\xLeft{-0.5} \def\xRight{0.5}

\psset{xunit=8,yunit=2}
\begin{pspicture}(\xLeft,-1.2)(0.55,1.3)
\psaxes[trigLabels,trigLabelBase=6,dx=2\pstRadUnit,subticks=4,ticksize=-2pt 2pt,
  labelFontSize=\scriptstyle,Dy=0.5]{->}(0,0)(\xLeft,-1.1)(\xRight,1.2)
\psset{algebraic,linewidth=0.5\pslinewidth}
\psplot[linestyle=dashed]{\xLeft}{\xRight}{x}
\psplot[linestyle=dashed]{\xLeft}{\xRight}{-x}
\psplot[linestyle=dashed]{\xLeft}{\xRight}{x^2}
\psplot[linestyle=dashed]{\xLeft}{\xRight}{-x^2}
%
\psplot[linecolor=blue,plotpoints=500]{\xLeft}{-0.07}{sin(1/x)}
\psplot[linecolor=blue,VarStep,VarStepEpsilon=1.e-8]{-0.07}{-0.001}{sin(1/x)}
\psplot[linecolor=blue,VarStep,VarStepEpsilon=1.e-8]{0.001}{0.07}{sin(1/x)}
\psplot[linecolor=blue,plotpoints=500]{0.07}{\xRight}{sin(1/x)}
%
\psplot[linecolor=red,VarStep,VarStepEpsilon=1.e-9]{\xLeft}{\xRight}{x*sin(1/x)}
%
\psplot[linecolor=green,VarStep,VarStepEpsilon=1.e-9]{\xLeft}{\xRight}{x^2*sin(1/x)}
\end{pspicture}
\end{document}

在此輸入影像描述

如果您希望它與 Spivak 的類似,則對不同的曲線使用不同的單位(從數學角度來看這是錯誤的):

\documentclass[pstricks, margin=5pt]{standalone}
\usepackage{pst-plot}
\begin{document}
\def\xLeft{-0.5} \def\xRight{0.5}

\psset{xunit=8,yunit=2}
\begin{pspicture}(\xLeft,-1.2)(0.55,1.3)
\psaxes[labels=x,trigLabels,trigLabelBase=6,dx=2\pstRadUnit,subticks=4,ticksize=-2pt 2pt,
  labelFontSize=\scriptstyle,Dy=0.5]{->}(0,0)(\xLeft,-1.1)(\xRight,1.2)
\psset{algebraic,linewidth=0.5\pslinewidth}
%
\psplot[linecolor=blue!50,VarStep,VarStepEpsilon=1.e-8]{\xLeft}{-0.01}{sin(1/x)}
\psplot[linecolor=blue!50,VarStep,VarStepEpsilon=1.e-8]{0.01}{\xRight}{sin(1/x)}
%
\psplot[yunit=3,linecolor=red,VarStep,VarStepEpsilon=1.e-9]{\xLeft}{\xRight}{x*sin(1/x)}
\psplot[yunit=3,linestyle=dashed]{\xLeft}{\xRight}{x}
\psplot[yunit=3,linestyle=dashed]{\xLeft}{\xRight}{-x}
%
\psplot[yunit=8,linecolor=green,VarStep,VarStepEpsilon=1.e-9]{\xLeft}{\xRight}{x^2*sin(1/x)}
%
\psplot[yunit=8,linestyle=dashed]{\xLeft}{\xRight}{x^2}
\psplot[yunit=8,linestyle=dashed]{\xLeft}{\xRight}{-x^2}
\end{pspicture}
\end{document}

在此輸入影像描述

答案2

為了正確繪製這些函數,您可以使用該VarStep參數。該pstricks-add文件甚至還有一個繪圖範例sin(1/x)(第 24.4 節 x 的倒數正弦)。

並且您必須分割繪圖才能sin(1/x)跳過 0:

\documentclass[pstricks, margin=5pt]{standalone}
\usepackage{pstricks-add}
\usepackage{pst-func}
\begin{document}
\begin{pspicture}*(-5,-2.2)(5,2)
\psaxes[labels=y,Dx=\pstPI2]{->}(0,0)(-5,-2)(5,2)
\uput[-90](!PI 0){$\pi$}\uput[-90](!PI neg 0){$-\pi$}\uput[-90](!PI 2 div 0){$\frac{\pi}2$}
\uput[-90](!PI 2 div neg 0){$-\frac{\pi}2$}
%
\psset{algebraic, VarStep, VarStepEpsilon=0.000001, linejoin=1}
%
\psplot[linestyle=dashed]{-5}{5}{x}
\psplot[linestyle=dashed]{-5}{5}{-x}
\psplot[linestyle=dashed]{-5}{5}{x^2}
\psplot[linestyle=dashed]{-5}{5}{-x^2}
%
\psplot[linecolor=blue]{-5}{-0.04}{sin(1/x)}
\psplot[linecolor=blue]{0.04}{5}{sin(1/x)}
%
\psplot[linecolor=red]{-5}{5}{x*sin(1/x)}
%
\psplot[linecolor=green]{-5}{5}{x^2*sin(1/x)}
\end{pspicture}
\end{document}

在此輸入影像描述

答案3

無法繪製這些曲線,因為它們無限振盪至零(事實上,它們是您無法繪製的連續可微函數的典型範例)。我們能得到的最好的結果是一個不包含零的範圍內的圖表。

Spivak 的圖片很好地顯示了函數的行為,但它們並不是準確的圖表。此外,在同一張圖片中表示所有這些函數很複雜,因為這些曲線需要不同的尺度。

而且,有效點並不是π的有理倍數,而是它的倒數,例如1/π(因為正弦函數的週期為2π,函數(x^n)\sin(1/x)以區間[1/( nπ ),1/((n+2)π)])。

這是我的解決方案(新版本),使用我的包xpicture。我們將以 [1/(nπ),1/((n+1)π)] 類型的區間繪製函數。

此外,我們還更改了軸之間的縱橫比,因為波的高度很快就會變成零。

\documentclass{standalone}
\usepackage{xpicture,ifthen}

\begin{document}

\COMPOSITIONfunction{\SINfunction}{\RECIPROCALfunction}{\F} % F(x)=sin(1/x)
\PRODUCTfunction{\IDENTITYfunction}{\F}{\G}                 % G(x)=x sin(1/x)
\PRODUCTfunction{\IDENTITYfunction}{\G}{\H}                 % H(x)=x^2sin(1/x)

% Command \grafic plots the three functions for x in [#1,#2]    
\newcommand{\grafic}[2]{%
   \pictcolor{blue}
   \ifthenelse{\lengthtest{#1 pt > 0.064 pt}}{% the xpicture algorithm, applied to F(x)=sin x,
                                              % fails for x<1/5\pi\approx 0.064
                                              % because tangents are too vertical 
   \pictcolor{green}
             \PlotFunction[12]\F{#1}{#2}
             \PlotFunction[12]\F{-#2}{-#1}}{}
          \pictcolor{blue}
   \PlotFunction[12]\G{#1}{#2}
   \PlotFunction[12]\G{-#2}{-#1}
   \pictcolor{red}    
   \PlotFunction[12]\H{#1}{#2}
   \PlotFunction[12]\H{-#2}{-#1}}

\setlength\unitlength{2cm}
\referencesystem(0,0)(5,0)(0,1)            % Change aspect ratio to 5:1

\fbox{\begin{Picture}(-1.1,-1.1)(1.1,1.1)
   \cartesianaxes(-1,-1)(1,1)
   \linethickness{1pt}
   \pictcolor{cyan}
     \PlotFunction{\IDENTITYfunction}{-1}{1}
   \pictcolor{gray}
     \PlotFunction{\SQUAREfunction}{-1}{1}
  {\changereferencesystem(0,0)(1,0)(0,-1)    % This is a trick to draw -x and -x^2  without defining them.
   \pictcolor{cyan}
     \PlotFunction{\IDENTITYfunction}{-1}{1}
   \pictcolor{gray}
     \PlotFunction{\SQUAREfunction}{-1}{1}}
   \newcounter{iteracio}
   \setcounter{iteracio}{1}
   \COPY1\maxim
   \whiledo{\value{iteracio}<10}{%                % Loop to print functions between 1,1/\pi,1/2\pi,...
       \MULTIPLY{\value{iteracio}}\numberPI\minim
       \DIVIDE1\minim\minim
       \grafic{\minim}{\maxim}
       \COPY\minim\maxim
       \stepcounter{iteracio}}
   % Add tics in x-axis at 1/\pi, 2/\pi
   \DIVIDE{1}{\numberPI}{\inversePI} 
   \DIVIDE{1}{\numberHALFPI}{\twoinversePI} 
              \printxticlabel{\inversePI}{1/\pi}
              \printxticlabel{\twoinversePI}{2/\pi}
\end{Picture}}
\end{document}

罪 1/x 和朋友們

相關內容