
我在乳膠原始檔中使用兩列佈局,並且有一系列(不等式)方程式要顯示,我想將它們保留在左列內。然而,在 \begin{align*} 環境下,它會使方程式溢出列,並在右列中佔用一些額外的空間。您可以參考我在此處附上的圖片,看看會發生什麼。如何將方程式限制在第一列?
這是我的乳膠原始碼。這是您可以嘗試的 MWE..
% \documentclass[conference]{IEEEtran}
\documentclass[10pt,conference,letterpaper]{IEEEtran}
\usepackage{amsmath}
\begin{document}
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
\begin{align*}
& \sum\nolimits_{e \in E^*} COST(g(e))\\
&= \sum\nolimits_{e \in S_1} COST(g(e))
+ \sum\nolimits_{e \in S_2} COST(g(e))
+ \sum\nolimits_{e \in S_3} COST(g(e))\\
&\le
2(1+\epsilon) COST(T^* \setminus T)
+ COST(T^* \cap T)
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 2(1+\epsilon)(COST(T^* \setminus T) + COST(T^* \cap T))
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 2(1+\epsilon)COST(T^*)
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 4(1+\epsilon)OPT_n
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 4+10\epsilon OPT_n
\end{align*}
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
\end{document}
答案1
這是一種可能的解決方案。使用resizebox
fromgraphicx
包和parbox
組合如下所示。
\resizebox{0.48\textwidth}{!}{\parbox{\linewidth}{ math envrionment}}
或者
{\tiny \begin{align*} ... \end{align*} environment}
程式碼
\documentclass[10pt,conference,letterpaper]{IEEEtran}
\usepackage{amsmath,graphicx}
\begin{document}
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
\resizebox{0.48\textwidth}{!}{\parbox{\linewidth}{
\begin{align*}
& \sum\nolimits_{e \in E^*} COST(g(e))\\
&= \sum\nolimits_{e \in S_1} COST(g(e))
+ \sum\nolimits_{e \in S_2} COST(g(e))
+ \sum\nolimits_{e \in S_3} COST(g(e))\\
&\le
2(1+\epsilon) COST(T^* \setminus T)
+ COST(T^* \cap T)
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 2(1+\epsilon)(COST(T^* \setminus T) + COST(T^* \cap T))
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 2(1+\epsilon)COST(T^*)
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 4(1+\epsilon)OPT_n
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 4+10\epsilon OPT_n
\end{align*}
}}
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs
\end{document}
答案2
我建議您不要採取任何最終導致數學表達式中使用的字體大小相對於周圍文字使用的字體大小的步驟。相反,您可能想要採用以下方法:
不要
\nolimits
在每個\sum
巨集之後使用修飾符。相反,將\sum{...}
表達式包含在\smashoperator
指令中;這減少了求和符號前後的空白量。 (\smashoperator
宏由包提供mathtools
,它是包的擴展(並加載)amsmath
。)在第 3 行和第 4 行插入額外的換行符號。
可選:以羅馬(直立)字體渲染“COST”和“OPT”。目前,TeX 將 COST 和 OPT 解釋為四字母和三字母變數組,即 as
C
O
S
T
和 asO
P
T
,導致字母間距鬆散且次優。 (如果您希望以斜體而不是直體呈現變數名稱,請在定義和 的巨集中使用\textit
而不是。)\textup
\COST
\OPT
\begin{align*}
& \smashoperator{\sum_{e \in E^*}} \COST(g(e))\\
&= \smashoperator{\sum_{e \in S_1}} \COST(g(e)) +
\smashoperator{\sum_{e \in S_2}} \COST(g(e)) +
\smashoperator{\sum_{e \in S_3}} \COST(g(e))\\
&\le 2(1+\epsilon) \COST(T^* \setminus T) + \COST(T^* \cap T)\\
&\qquad + 4\epsilon \OPT_n + 2\epsilon \OPT_n\\
&\le 2(1+\epsilon)(\COST(T^* \setminus T) + \COST(T^* \cap T))\\
&\qquad + 4\epsilon \OPT_n + 2\epsilon \OPT_n\\
&\le 2(1+\epsilon)\COST(T^*) + 4\epsilon \OPT_n + 2\epsilon \OPT_n\\
&\le 4(1+\epsilon)\OPT_n + 4\epsilon \OPT_n + 2\epsilon \OPT_n\\
&\le 4+10\eps
ilon \OPT_n \end{對齊*}