在各種簡單疾病模型中,感染人數的變化率可以寫為
在哪裡
I 是感染人數,S 是易感人數,
1 是人口總數,bi 是疾病的傳播率,mis 是個體離開感染群體的比率。
這裡 IQ 表示 I 對時間的導數,我們將在整篇論文中使用此約定。
方程式(1)適用於多種單群模型。繼卡斯蒂略-查維斯等人之後。 [3],我們允許 b 是 1 的函數,允許關於混合的各種假設。根據模型的類型,人均清除率 m 可能包括「背景」死亡率或疾病引起的死亡率,或向免疫區、易感區或隔離區的過渡率。
答案1
這個排版有什麼問題嗎?請澄清你的問題!你哪裡有問題?請使用如下圖所示的 MWE:
% arara: pdflatex
% arara: pdflatex
\documentclass{article}
\usepackage[english]{babel}
\usepackage{csquotes}
\usepackage{mathtools}
\begin{document}
In a wide variety of simple disease models, the rate of change in the number of
infected people can be written as
\begin{equation}\label{eq:1}
\dot{I}=\beta\frac{SI}{T}-mI=\biggl(\beta\frac{S}{T}-m\biggr)I,
\end{equation}
where $I$ is the number of infected people, $S$ is the number of susceptible people,
$T$ is the total number of people in the population, $\beta$ is the transmission rate
of the disease, and $m$ is the rate at which individuals leave the infected group.
Here $\dot{I}$ means the derivative of $I$ with respect to time, a convention we will
use throughout the paper. Equation \eqref{eq:1} is applicable to a wide variety of
one-group models. Following Ca\-stillo-Chavez et al.\ [3], we allow $b$ to be a
function of $T$, allowing a variety of assumptions about mixing. Depending on the type
of model, the per-capi\-ta removal rate, $m$, may include the rate of
\enquote{background} mortality or disease-induced mortality, or transitions to immune,
susceptible or quarantined compartments.
\end{document}