
所以我正在為我最後一年的工程項目寫一份報告。我有一些很長的方程式需要處理,而且我對 LaTeX 還很陌生。
我試著分解的等式是:
\begin{multline*}
\dot{S_v} = \frac{\mu_{tot}}{T} **\left[** 2\left( \left( \frac{\partial u}{\partial x}\right)^2 + \left( \frac{\partial v}{\partial y}\right)^2 + \left( \frac{\partial w}{\partial z}\right)^2 \right) + 2 \left[\frac{\partial v}{\partial x}\frac{\partial u}{\partial y} +\frac{\partial w}{\partial x}\frac{\partial u}{\partial z} +\frac{\partial w}{\partial y}\frac{\partial v}{\partial z}\right] + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2 + \left(\frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2 **\right]**
\end{multline*}
但是,一旦我添加 \\
拆分方程, \left[ 和 \right] 就無法正確運行。有任何想法嗎?
這個方程式大致上就是我想要的樣子。我只需要在它周圍有兩個大方括號。
\begin{multline*}
\dot{S_v} = \frac{\mu_{tot}}{T} 2\left( \left( \frac{\partial u}{\partial x}\right)^2 + \left( \frac{\partial v}{\partial y}\right)^2 + \left( \frac{\partial w}{\partial z}\right)^2 \right) \\ + 2 \left[\frac{\partial v}{\partial x}\frac{\partial u}{\partial y} +\frac{\partial w}{\partial x}\frac{\partial u}{\partial z} +\frac{\partial w}{\partial y}\frac{\partial v}{\partial z}\right] + \\ \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial x}\right)^2 + \\ \left(\frac{\partial v}{\partial z}\right)^2 + \left(\frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2
\end{multline*}
謝謝!
答案1
日常咆哮
你需要在第二行\right.
之前\\
和\left.
前面,例如
\left[......\right. \\
\left. .......\right]
因為\left[
和\right]
不能在沒有平衡的情況下被打破。
常規推薦解決方案
你需要\Biggl[
並\Biggr]
從amsmath
\documentclass{article}
\usepackage{mathtools}
\begin{document}
\begin{multline*}
\dot{S_v} = \frac{\mu_{tot}}{T} \Biggl[ 2\left( \left( \frac{\partial u}{\partial x}\right)^2 + \left( \frac{\partial v}{\partial y}\right)^2 + \left( \frac{\partial w}{\partial z}\right)^2 \right) + 2 \left[\frac{\partial v}{\partial x}\frac{\partial u}{\partial y} +\frac{\partial w}{\partial x}\frac{\partial u}{\partial z} +\frac{\partial w}{\partial y}\frac{\partial v}{\partial z}\right] \\
+ \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2 + \left(\frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2 \Biggr]
\end{multline*}
\end{document}