
你能幫我將文字移近左側嗎,例如:
\documentclass[11pt,fleqn]{book}
\usepackage{amsmath,amsfonts,amssymb,amsthm}
\begin{document}
\noindent
where
\begin{flalign*}
&\Delta f_{res} & - & \mbox{\emph{lock time in microseconds}}&&\\
&\mathcal{L} & - & \mbox{\emph{is the loop bandwidth in kHz, and}}&&\\
&f_{m} & - & \frac{Frequency~Tolerance}{Frequency~Jump}&&
\end{flalign*}
\end{document}
謝謝,
答案1
這是一種不被濫用的可能性flalign
:
\documentclass{book}
\usepackage{amsmath,siunitx}
\begin{document}
\noindent
where
\[
\makebox[\displaywidth][l]{$\displaystyle
\begin{array}{@{} l l @{}}
\Delta f_{\mathrm{res}} & \mbox{---\quad \emph{lock time in microseconds,}} \\
\mathcal{L} & \mbox{---\quad \emph{loop bandwidth in \si{kHz}, and}} \\
f_{m} & \mbox{---\quad}\dfrac{\text{\emph{Frequency Tolerance}}}
{\text{\emph{Frequency Jump}}.}
\end{array}
$}
\]
\end{document}
答案2
這是您更新的程式碼:
\documentclass[11pt,fleqn]{book}
\usepackage{amsmath,amsfonts,amssymb,amsthm}
\begin{document}
\noindent
where
\begin{flalign*}
&\Delta f_{res} & \hspace{-1.6cm} - & \mbox{\emph{lock time in microseconds}}&&\\
&\mathcal{L} & \hspace{-2.1cm} - & \mbox{\emph{is the loop bandwidth in kHz, and}}&&\\
&f_{m} & \hspace{-2cm} - & \frac{Frequency~Tolerance}{Frequency~Jump}&&
\end{flalign*}
\end{document}
答案3
怎麼樣,這樣看起來就更好了。
\documentclass[11pt,fleqn]{book}
\usepackage{amsmath,amsfonts,amssymb,amsthm}
\begin{document}
\noindent
where
\begin{flalign*}
&\Delta f_{res} & \hspace{-1.6cm}{:~} & \mbox{\emph{lock time in microseconds}}&&\\
&\mathcal{L} & \hspace{-2.1cm}{:~} & \mbox{\emph{is the loop bandwidth in kHz, and}}&&\\
&f_{m} & \hspace{-2cm}{:~} & \frac{Frequency~Tolerance}{Frequency~Jump}&&
\end{flalign*}
\end{document}
答案4
您可以使用左對齊tabular
環境來實現您的目標。 (以下螢幕截圖中沿左側邊緣的線用於說明文字區塊的邊緣。)
順便說一句,我認為實際上沒有必要以斜體呈現解釋性文字片段。要以直立文字字體呈現材料,只需刪除\em
下面程式碼中的指令,並替換\textit
為\textrm
.
\documentclass[11pt,fleqn]{book}
\usepackage{amsmath,array}
\usepackage{showframe}
\newcolumntype{L}{>{$}l<{$} }
\begin{document}
\noindent \dots
\noindent where\\[1ex]
\noindent
\begin{tabular}{@{} L @{\quad---\quad} >{\em}l}
\Delta f_{\textit{res}} & lock time in microseconds,\\
\mathcal{L} & loop bandwidth in kHz, and\\[0.5ex]
f_{m} & $\dfrac{\textit{Frequency Tolerance}}{\textit{Frequency Jump}}$\\
\end{tabular}
\end{document}