我有這組方程,它們佔了太多空間。
有哪些建議可以使它們更加緊湊?
\begin{equation}
b_s(t) = \bm{p}_s \exp \left(-t \bm{B}_s\right)\bm{B}_s \bm{e}_s',
\end{equation}
where
\begin{equation}
\bm{B}_s = (\bm{B}_1 \oplus \bm{R}_2) - \lambda_R \bm{e}'( \bm{p}_1
\otimes \bm{r}_2),
\end{equation}
\begin{displaymath}
\bm{p}_s = (1 - \rho_s)(\bm{p}_1 \otimes \bm{r}_2)\bm{K},
\end{displaymath}
\begin{displaymath}
\rho_s = \lambda_R ( \bm{p}_1 \otimes \bm{r}_2) (\bm{B}_1 \oplus
\bm{R}_2)^{-1} \bm{e}_s',
\end{displaymath}
\begin{displaymath}
\bm{K}_s = (\bm{I} - \bm{U}_s)^{-1},\ \ \ \bm{U}_s = \bm{A}_s^{-1},
\end{displaymath}
\begin{displaymath}
\bm{A}_s = \bm{I} + \frac{1}{\lambda_R}( \bm{B}_1 \oplus \bm{R}_2) -
\bm{e}' ( \bm{p}_1 \otimes \bm{r}_2 ),
\end{displaymath}
\begin{displaymath}
\bm{R}_2 = \bm{B}_2 - \lambda_A\bm{Q}_2,
\end{displaymath}
\begin{displaymath}
\bm{r}_2 = (1 - \rho_2)\lambda_A \bm{p}_2\bm{K}_2,\
\end{displaymath}
\begin{displaymath}
\rho_2 = \lambda_A \bm{p}_2 \bm{V}_2 \bm{e}_2,
\end{displaymath}
\begin{displaymath}
\bm{K}_2 = (\bm{I} - \bm{U}_2)^{-1},\ \ \ \bm{U}_2 = \bm{A}_2^{-1},
\end{displaymath}
\begin{displaymath}
\bm{A}_2 = \bm{I} + \frac{1}{\lambda_A}\bm{B}_2 - \bm{e}_2' \bm{p}_2.
\end{displaymath}
UDP日期:
答案1
預設情況下,方程式(和顯示數學)環境在上方和下方留有一些空間。由於您連續使用了其中許多,因此它們會累積。您應該使用對齊環境來避免間距過大。
下次,請發布完全可編譯的程式碼,以便對其他人有所幫助。
\documentclass[11pt]{article}
%
\usepackage{mathtools}
\usepackage{esvect}
\usepackage{amssymb}
\usepackage{bm}
\begin{document}
\begin{align}
b_s(t) &= \bm{p}_s \exp \left(-t \bm{B}_s\right)\bm{B}_s \bm{e}_s', \\
\shortintertext{where}
\bm{B}_s &= (\bm{B}_1 \oplus \bm{R}_2) - \lambda_R \bm{e}'( \bm{p}_1
\otimes \bm{r}_2), \\
\bm{p}_s &= (1 - \rho_s)(\bm{p}_1 \otimes \bm{r}_2)\bm{K}, \notag \\
\rho_s &= \lambda_R ( \bm{p}_1 \otimes \bm{r}_2) (\bm{B}_1 \oplus
\bm{R}_2)^{-1} \bm{e}_s', \notag \\
\bm{K}_s &= (\bm{I} - \bm{U}_s)^{-1},\ \ \ \bm{U}_s = \bm{A}_s^{-1},
\notag \\
\bm{A}_s &= \bm{I} + \frac{1}{\lambda_R}( \bm{B}_1 \oplus \bm{R}_2) -
\bm{e}' ( \bm{p}_1 \otimes \bm{r}_2 ), \notag \\
\bm{R}_2 &= \bm{B}_2 - \lambda_A\bm{Q}_2, \notag \\
\bm{r}_2 &= (1 - \rho_2)\lambda_A \bm{p}_2\bm{K}_2,\ \notag \\
\rho_2 &= \lambda_A \bm{p}_2 \bm{V}_2 \bm{e}_2, \notag \\
\bm{K}_2 &= (\bm{I} - \bm{U}_2)^{-1},\ \ \ \bm{U}_2 = \bm{A}_2^{-1},
\notag \\
\bm{A}_2 &= \bm{I} + \frac{1}{\lambda_A}\bm{B}_2 - \bm{e}_2'
\bm{p}_2.\notag
\end{align}
\end{document}