我想在itemise之間寫,即在一個要點之後,我想在它下面添加2個小句子。查看我的程式碼,我想要的如下:
\documentclass{amsart}
\newtheorem{thm}{Theorem}
\usepackage{xcolor}
\begin{document}
\section{\textcolor{blue}{Testing Nilpotence in linear time}}
Given a group $G$ in the form of mutiplication table, we want to check to decide divides the order of $G$}. Algorithm for testing nilpotence is given below. \\
\begin{itemize}
\item Compute the prime factorization of $n= p_1^{\alpha_1} \times p_2^{\alpha_2} \cdots p_i^{\alpha_i}$. \\
\item Determine the order of all elements in $G$. \\
\item For $1 \le i \le r$, check if $\mathcal{N}(p_i^{\alpha_i}) \neq p_i^{\alpha_i}$ then $G$ is not nilpotent. \\
\item Else output that $G$ is nilpotent
\end{itemize}
問題:如何新增圖中所示的小文字?
答案1
我建議您建立一個名為 的小型實用巨集\aside
。如果\footnotesize
文字太小,不適合您的口味,請改用\small
。
\documentclass{amsart}
\usepackage{xcolor}
\newcommand\aside[1]{\par\quad{\footnotesize(#1)}\par} % or "\small", if you prefer
\begin{document}
\section{\color{blue}Testing Nilpotence in linear time}
Given a group $G$ in the form of multiplication table, we want to check to
decide [...] divides the order of $G$. An algorithm for testing nilpotence
is given below.
\begin{itemize}
\item Compute the prime factorization of $n = p_1^{\alpha_1} \times
p_2^{\alpha_2} \cdots \times p_i^{\alpha_i}$.
\aside{Each $p_i^{\alpha_i}$ is the highest power}
\item Determine the order of all elements in $G$.
\aside{It can be done easily}
\item For $1 \le i \le r$, check if $\mathcal{N}(p_i^{\alpha_i}) \neq
p_i^{\alpha_i}$. If true, $G$ is not nilpotent.
\item Else, conclude that $G$ is nilpotent.
\end{itemize}
\end{document}
答案2
- 你的mwe不完整(缺少的是
\end{document}
) - 它還包含錯誤(
}
之後是 多餘的$G$
) - 所有
\\
後面的項目都是多餘的 - (主)項目下方的附加行只需換行即可(您可以為此行選擇較小的字體大小)
- 為了更好地格式化使用包
enumitem
\documentclass{amsart}
\newtheorem{thm}{Theorem}
\usepackage{xcolor}
\usepackage{enumitem}
\begin{document}
\section{\textcolor{blue}{Testing Nilpotence in linear time}}
Given a group $G$ in the form of multiplication table, we want to check to decide divides the order of $G$. Algorithm for testing nilpotence is given below. %\\ had to be removed
\begin{itemize}[itemsep=1ex,leftmargin=1cm]
\item Compute the prime factorization of $n= p_1^{\alpha_1} \times p_2^{\alpha_2} \cdots p_i^{\alpha_i}$. % "\\" had to be removed
{\small(small text in the next line)}
\item Determine the order of all elements in $G$. % "\\" had to be removed
{\small(small text in the next line)}
\item For $1 \le i \le r$, check if $\mathcal{N}(p_i^{\alpha_i}) \neq p_i^{\alpha_i}$ then $G$ is not nilpotent. % "\\" had to be removed
{\small(small text in the next line)}
\item Else output that $G$ is nilpotent
\end{itemize}
\end{document}