如何在該圖片中添加數字以自動最大化給定行數的區域數量?

如何在該圖片中添加數字以自動最大化給定行數的區域數量?

我想對劃分這張圖片的平面線的線區域進行編號。 在此輸入影像描述

一條線,我們有兩個區域,兩條線,我們有四個區域。我試過

\documentclass[tikz,12pt]{standalone}
\begin{document}
    \begin{tikzpicture}
    \path
    (0,0) coordinate (O)
    (-2,-2) coordinate (A)
    (2,2) coordinate (B)
    (2,-2) coordinate (C)
    (-2,2) coordinate (D);
    \node at (barycentric cs:A=1,C=1,B=1) {$1$};
    \node at (barycentric cs:A=1,D=1,B=1) {$2$};
    \draw (A) -- (B);
    \end{tikzpicture}


    \begin{tikzpicture}
    \path
    (0,0) coordinate (O)
    (-2,-2) coordinate (A)
    (2,2) coordinate (B)
    (-4,-2) coordinate (C)
    (4,2) coordinate (D);
    \draw (A) -- (B) (C) -- (D);
    \node at (barycentric cs:A=1,O=1,C=1) {$1$};
    \node at (barycentric cs:B=1,O=1,C=1) {$2$};
    \node at (barycentric cs:B=1,O=1,D=1) {$3$};
    \node at (barycentric cs:A=1,O=1,D=1) {$4$};
    \end{tikzpicture}
\end{document} 

在此輸入影像描述

在此輸入影像描述

我知道,最大數$L_n$是$\dfrac{n^2+n+2}{2}$。如何自動繪製上面這張圖片 如何自動在這張圖片中加入數字?

答案1

這遠遠不是一個完整的答案。問題似乎是,給定行數n,如何排列它們以使區域數達到其最大數(n^2+n+2)/2。我認為需要具備以下幾個條件:

  1. 沒有兩條不同的直線是平行的。
  2. 在給定交點處相交的線不超過兩條。

使用這些指導原則,人們可以建立一張創建這種排列的圖片。

\documentclass[tikz,border=3mm]{standalone}
\begin{document}
\begin{tikzpicture}[pics/divi/.style={code={
\foreach \X [evaluate=\X as \Y using {360*\X/(#1+1-isodd(#1))}]
     in {1,...,#1}
\draw[scale=1/#1] ({90+\Y}:#1/4)
++ ({180+\Y}:1+1.5*#1) -- ++ ({\Y}:2+3*#1);
}}]
\matrix {\pic {divi=1}; & \pic {divi=2}; \\
\pic {divi=3}; & \pic {divi=4}; \\
\pic {divi=5}; & \pic {divi=6}; \\
};
\end{tikzpicture}
\end{document}

在此輸入影像描述

我什至沒有嘗試輸入數字。

答案2

這提供了一個宏來計算三角形的內心。困難的部分是避免浮點溢出。

\documentclass{standalone}
\usepackage{tikz}
\usetikzlibrary{calc}

\newcommand{\incenter}[4]% #1-#3 = coordinate names for vertices, #4 = name of incenter
{\pgfscope
  \pgfpathmoveto{\pgfpointanchor{#1}{center}}%
  \pgfgetlastxy{\xa}{\ya}%
  \pgfpathmoveto{\pgfpointanchor{#2}{center}}%
  \pgfgetlastxy{\xb}{\yb}%
  \pgfpathmoveto{\pgfpointanchor{#3}{center}}%
  \pgfgetlastxy{\xc}{\yc}%
  \pgfmathsetmacro{\a}{veclen(\xc-\xb,\yc-\yb)}%
  \pgfmathsetmacro{\b}{veclen(\xc-\xa,\yc-\ya)}%
  \pgfmathsetmacro{\c}{veclen(\xb-\xa,\yb-\ya)}%
  \pgfmathsetmacro{\d}{\a+\b+\c}%
  \pgfmathsetmacro{\a}{\a/\d}%
  \pgfmathsetmacro{\b}{\b/\d}%
  \pgfmathsetmacro{\c}{\c/\d}%
  \pgfmathsetlengthmacro{\xo}{\a*\xa + \b*\xb + \c*\xc}%
  \pgfmathsetlengthmacro{\yo}{\a*\ya + \b*\yb + \c*\yc}%
  \pgfcoordinate{#4}{\pgfpoint{\xo}{\yo}}
\endpgfscope}


\begin{document}
    \begin{tikzpicture}
    \path
    (0,0) coordinate (O)
    (-2,-2) coordinate (A)
    (2,2) coordinate (B)
    (2,-2) coordinate (C)
    (-2,2) coordinate (D);
    \draw (A) -- (B);
    \incenter{A}{C}{B}{O1}%
    \node at (O1) {1};
    \incenter{A}{D}{B}{O2}%
    \node at (O2) {2};
    \end{tikzpicture}


    \begin{tikzpicture}
    \path
    (0,0) coordinate (O)
    (-2,-2) coordinate (A)
    (2,2) coordinate (B)
    (-4,-2) coordinate (C)
    (4,2) coordinate (D);
    \draw (A) -- (B) (C) -- (D);
    \incenter{A}{O}{C}{O1}%
    \node at (O1) {1};
    \incenter{B}{O}{C}{O2}%
    \node at (O2) {2};
    \incenter{B}{O}{D}{O3}%
    \node at (O3) {3};
    \incenter{A}{O}{D}{O4}%
    \node at (O4) {4};
    \end{tikzpicture}
\end{document}

示範


幾何課

答案3

繪製這些圖表很容易。下面的程式碼定義了一個宏\DividedPlanes

  \DividedPlanes{5}
  \DividedPlanes{6}

分別為 5 點和 6 點產生這些配置:

在此輸入影像描述

中的線\DividedPlanes{<n>}是透過首先使用循環圍繞點 處的半徑圓\foreach放置座標來繪製的。之後,透過迴圈遍歷 中的所有數字對(相當於點)來繪製線條。經過比我現在有時間更多的思考(這是一個工作日),應該可以標記這些區域(當奇數和偶數時,行為略有不同)。如果當地的貓科動物沒有打敗我的話,我可能會回到這個主題。n22k\pi/nk=1,2,...,n{1,2,...,n}n

這是代碼:

\documentclass{article}
\usepackage{tikz}

% allow an optional argument so that we can pass some optional
% style commands to the tikzpicture environment
% usage: \DividedPlanes[style]{n}
\newcommand\DividedPlanes[2][]{
  \begin{tikzpicture}[#1]
    % reserve some real estate for the image
    \draw[white](-3,-3) rectangle (3,3);
    \foreach \pt  in {1,...,#2} {
        % name coordinates (1), (2), ..., (#2)
        \coordinate (\pt) at (\pt*360/#2:2);
    }
    \foreach \apt in {1,...,#2} {
       \foreach \bpt in {1,...,#2} {
         \ifnum\apt=\bpt\else
           % draw a line when a and b are distinct
           \draw[shorten >=-20,shorten <=-20](\apt)--(\bpt);
         \fi
       }
    }
  \end{tikzpicture}
}
\begin{document}

  \DividedPlanes{2}

  \DividedPlanes{3}
  \DividedPlanes{4}

  \DividedPlanes{5}
  \DividedPlanes{6}

\end{document}

相關內容