如何在“對齊”中垂直居中數字方程,並打破線方程以便在等號後縮進?

如何在“對齊”中垂直居中數字方程,並打破線方程以便在等號後縮進?

我想輸入這樣的數學方程式: 在此輸入影像描述 但使用這段程式碼我無法得到上面那樣的結果。任何人都可以幫我編輯我的程式碼以獲得上述結果嗎?

\documentclass{book}
\usepackage{amsmath}
\begin{document}
\begin{align}
    u_j^{n+1}&=u_j^{n}-a(t_n)\Delta t \dfrac{\partial u}{\partial x}
    +\dfrac{(\Delta t)^2}{2}\left(a(t_n)^2\dfrac{\partial^2 u}{\partial x^2}-\dfrac{da(t_n)}{dt}\dfrac{\partial u}{\partial x}\right)\nonumber\\
    &=u_j^{n}-a(t_n)\Delta t \dfrac{\partial u}{\partial x}
    +a(t_n)^2\dfrac{(\Delta t)^2}{2}\dfrac{\partial^2 u}{\partial x^2}-\dfrac{da(t_n)}{dt}\dfrac{(\Delta t)^2}{2}\dfrac{\partial u}{\partial x}\nonumber\\
    &=u_j^{n}-a(t_n)\Delta t \left(\dfrac{u_{j+1}^{n}-u_{j-1}^{n}}{2\Delta x}\right)+a(t_n)^2\dfrac{(\Delta t)^2}{2}\left(\dfrac{u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n}}{(\Delta x)^2}\right)\nonumber\\
    %%%%%%%%%%%%%%%%%%%%%%
    &-\dfrac{da(t_n)}{dt}\dfrac{(\Delta t)^2}{2}\left(\dfrac{u_{j+1}^{n}-u_{j-1}^{n}}{2\Delta x}\right)\nonumber\\
    \begin{aligned}
    &= u_j^{n}-\dfrac{1}{2}\nu_n\left(u_{j+1}^{n}-u_{j-1}^{n}\right)
    +\dfrac{1}{2}\nu_n^2 \left(u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n}\right)
    -\dfrac{da(t_n)}{dt}\dfrac{(\Delta t)^2}{4\Delta x}\left(u_{j+1}^{n}-u_{j-1}^{n}\right)
    \end{aligned}
    \end{align}
\end{document}

答案1

對於以數字為中心的方程,請使用equationaligned,而不是align。對於縮進,我\qquad在需要的地方插入了。我還必須打斷你的一長行,為居中的 eqn 編號騰出空間。

\documentclass{book}
\usepackage{amsmath}
\begin{document}
\begin{equation}
\begin{aligned}
    u_j^{n+1}&=u_j^{n}-a(t_n)\Delta t \dfrac{\partial u}{\partial x}
    +\dfrac{(\Delta t)^2}{2}\left(a(t_n)^2\dfrac{\partial^2 u}{\partial x^2}-\dfrac{da(t_n)}{dt}\dfrac{\partial u}{\partial x}\right)\\
    &=u_j^{n}-a(t_n)\Delta t \dfrac{\partial u}{\partial x}
    +a(t_n)^2\dfrac{(\Delta t)^2}{2}\dfrac{\partial^2 u}{\partial x^2}-\dfrac{da(t_n)}{dt}\dfrac{(\Delta t)^2}{2}\dfrac{\partial u}{\partial x}\\
    &=u_j^{n}-a(t_n)\Delta t \left(\dfrac{u_{j+1}^{n}-u_{j-1}^{n}}{2\Delta x}\right)\\
  &\qquad+a(t_n)^2\dfrac{(\Delta t)^2}{2}\left(\dfrac{u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n}}{(\Delta x)^2}\right)\\
    %%%%%%%%%%%%%%%%%%%%%%
    &\qquad-\dfrac{da(t_n)}{dt}\dfrac{(\Delta t)^2}{2}\left(\dfrac{u_{j+1}^{n}-u_{j-1}^{n}}{2\Delta x}\right)\\
    &= u_j^{n}-\dfrac{1}{2}\nu_n\left(u_{j+1}^{n}-u_{j-1}^{n}\right)
    +\dfrac{1}{2}\nu_n^2 \left(u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n}\right)\\
   &\qquad-\dfrac{da(t_n)}{dt}\dfrac{(\Delta t)^2}{4\Delta x}\left(u_{j+1}^{n}-u_{j-1}^{n}\right)
    \end{aligned}
\end{equation}
\end{document}

在此輸入影像描述


附錄

OP 的評論對所期望的內容提供了不同的解釋。希望這符合願望。

\documentclass{book}
\usepackage{amsmath}
\begin{document}
\begin{align}
    u_j^{n+1}&=u_j^{n}-a(t_n)\Delta t \dfrac{\partial u}{\partial x}
    +\dfrac{(\Delta t)^2}{2}\left(a(t_n)^2\dfrac{\partial^2 u}{\partial x^2}-\dfrac{da(t_n)}{dt}\dfrac{\partial u}{\partial x}\right)\nonumber\\
    &=u_j^{n}-a(t_n)\Delta t \dfrac{\partial u}{\partial x}
    +a(t_n)^2\dfrac{(\Delta t)^2}{2}\dfrac{\partial^2 u}{\partial x^2}-\dfrac{da(t_n)}{dt}\dfrac{(\Delta t)^2}{2}\dfrac{\partial u}{\partial x}\nonumber\\
    &=u_j^{n}-a(t_n)\Delta t \left(\dfrac{u_{j+1}^{n}-u_{j-1}^{n}}{2\Delta x}\right)
  \nonumber\\
  &\qquad+a(t_n)^2\dfrac{(\Delta t)^2}{2}\left(\dfrac{u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n}}{(\Delta x)^2}\right)\nonumber\\
    %%%%%%%%%%%%%%%%%%%%%%
    &\qquad-\dfrac{da(t_n)}{dt}\dfrac{(\Delta t)^2}{2}\left(\dfrac{u_{j+1}^{n}-u_{j-1}^{n}}{2\Delta x}\right)\nonumber\\
    & 
\begin{aligned}
{} &= u_j^{n}-\dfrac{1}{2}\nu_n\left(u_{j+1}^{n}-u_{j-1}^{n}\right)
    +\dfrac{1}{2}\nu_n^2 \left(u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n}\right)\\ 
  &\qquad-\dfrac{da(t_n)}{dt}\dfrac{(\Delta t)^2}{4\Delta x}\left(u_{j+1}^{n}-u_{j-1}^{n}\right)
\end{aligned}
    \end{align}
\end{document}

在此輸入影像描述

相關內容