
我的程式碼是
\documentclass{book}
\usepackage{wrapfigure}
\newtheorem{problem}{P}[chapter]
\begin{document}
A circle is drawn in a sector of a larger circle
\begin{problem}
\begin{wrapfigure}{r}{0.5\textwidth}
\centering
\includegraphics[width=0.38\textwidth]{TrigFig23.pdf}
\end{wrapfigure}
\noindent
of radius $r$, as shown in the adjacent figure.
The smaller circle is tangent to the two bounding radii and the arc of the sector. Find the radius of the smaller circle.
\end{problem}
\end{document}
該程式碼根本不產生圖形(也不顯示錯誤)。我wrapfig
也用過包包。請幫忙!
答案1
用兩個小頁面代替wrapfig
:
\documentclass{book}
\usepackage{graphicx}
\usepackage[export]{adjustbox}
\newtheorem{problem}{P}[chapter]
\begin{document}
\begin{problem}
\begin{minipage}[t]{0.5\textwidth}
A circle is drawn in a sector of a larger circle of radius $r$, as shown in the adjacent figure.
The smaller circle is tangent to the two bounding radii and the arc of the sector. Find the radius of the smaller circle.
\end{minipage}%
\begin{minipage}[t]{0.5\textwidth}
\centering
\includegraphics[width=0.38\textwidth,valign=t]{example-image}
\end{minipage}
\end{problem}
\end{document}
答案2
我建議這個變體佈局,帶有一insbox
組純 TeX 巨集套件:
\documentclass{book}
\usepackage{graphicx}
\input{insbox}
\newtheorem{problem}{P}[chapter]
\begin{document}
\begin{problem}\leavevmode%
\InsertBoxR{-1}{\includegraphics[width=0.38\textwidth]{example-image}}\par\noindent
A circle is drawn in a sector of a larger circle of radius $r$, as shown in the adjacent figure.
The smaller circle is tangent to the two bounding radii and the arc of the sector. Find the radius of the smaller circle.
\end{problem}
\end{document}
答案3
由於“問題”是一個衝突的環境,它阻止了圖形的放置,並且“wrapfigure”被放置在段落的開頭,因此您可以提供一個假段落~~\vspace*{-\baselineskip}
\documentclass{book}
\usepackage{wrapfig}
\usepackage{graphicx}
\newtheorem{problem}{P}[chapter]
\begin{document}
A circle is drawn in a sector of a larger circle
\begin{wrapfigure}{r}{0.5\textwidth}
\centering
\includegraphics[width=0.38\textwidth]{example-image-a.pdf}
\end{wrapfigure}
~~\vspace*{-\baselineskip}
\begin{problem}
\noindent
of radius $r$, as shown in the adjacent figure.
The smaller circle is tangent to the two bounding radii and the
arc of the sector. Find the radius of the smaller circle.
\end{problem}
\end{document}