
這就是我目前所擁有的:
\documentclass{report}
\usepackage{wrapfig}
\usepackage{multicol}
\usepackage{import}
\pdfminorversion=7
\usepackage{pdfpages}
\usepackage{transparent}
\newcommand{\incfig}[2][]{%
\def\svgwidth{#1\columnwidth}
\import{./figures/}{#2.pdf_tex}
}
\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.
\begin{wrapfigure}{r}{0.4\linewidth}
\centering
\caption{$y = g(x)$}
\incfig[0.4]{limit-graph}
\label{fig:limit_graph}
\end{wrapfigure}
$ $
\begin{multicols}{2}
\begin{enumerate}
\item[\textbf{2.)}] $g(5)$.
\vspace{2cm}
\item[\textbf{10.)}] $g(-2)$.
\vspace{2cm}
\item[\textbf{12.)}] $\lim_{x \to 2^{+}} g(t)$.
\vspace{2cm}
\end{enumerate}\columnbreak\begin{enumerate}
\item[\textbf{3.)}] $\lim_{t \to 5} g(t)$.
\vspace{2cm}
\item[\textbf{11.)}] $\lim_{t \to 2^{-}} g(t)$.
\vspace{2cm}
\item[\textbf{13.)}] $\lim_{x \to -2} g(t)$.
\vspace{2cm}
\end{enumerate}
\end{multicols}
Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}] \\\\
\textbf{19.)} $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{document}
但這是輸出:
我究竟做錯了什麼?
答案1
我建議使用任務包並將圖表放在小型頁面中
%https://tex.stackexchange.com/questions/661529/place-figure-next-to-two-enumerate-enivronments-side-by-side
\documentclass{report}
\usepackage{tasks}
\usepackage{graphicx}
\parindent=0pt
\settasks{label=\bfseries\arabic*.),label-width=2em}
\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure.
\begin{minipage}[t]{0.6\linewidth}
\vspace{0pt}
\begin{tasks}[start=2](2)
\task $g(5)$.
\vspace{2cm}
\task $g(-2)$.
\vspace{2cm}
\end{tasks}
\begin{tasks}[start=10](2)
\task $\lim_{x \to 2^{+}} g(t)$.
\vspace{2cm}
\task $\lim_{t \to 5} g(t)$.
\vspace{2cm}
\task $\lim_{t \to 2^{-}} g(t)$.
\vspace{2cm}
\task $\lim_{x \to -2} g(t)$.
\vspace{2cm}
\end{tasks}
\end{minipage}%
\begin{minipage}[t]{0.4\linewidth}
\vspace{0pt}
\centering
\includegraphics[width=\linewidth]{example-image-duck}
$y = g(x)$
\end{minipage}
Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}]
\begin{tasks}[start=19](2)
\task $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{tasks}
\end{document}
編輯2問題空間 使用 paracol 可以得到更好的解決方案。
套件的debug選項很有趣
%https://tex.stackexchange.com/questions/661529/place-figure-next-to-two-enumerate-enivronments-side-by-side
\documentclass{report}
\usepackage{graphicx}
\usepackage{tasks}
\usepackage{paracol}
\parindent=0pt
\settasks{label=\bfseries\arabic*.),label-width=2em,before-skip = 0pt,after-skip=2cm,after-item-skip = 2cm,debug}
%\settasks{label=\bfseries\arabic*.),label-width=2em,before-skip = 0pt,after-skip=2cm,after-item-skip = 2cm}
\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.
\smallskip
\begin{paracol}{2}
\begin{tasks}[start=2](2)
\task $g(5)$.
\task $g(-2)$.
\end{tasks}
\begin{tasks}[start=10](2)
\task $\lim_{x \to 2^{+}} g(t)$.
\task $\lim_{t \to 5} g(t)$.
\task $\lim_{t \to 2^{-}} g(t)$.
\task $\lim_{x \to -2} g(t)$.
\end{tasks}
\switchcolumn
\begin{figure}
\includegraphics[width=\linewidth,height=7cm]{example-image-duck}
\caption{$y = g(x)$}
\label{fig:limit_graph}
\end{figure}
\end{paracol}
Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}]
\begin{tasks}[start=19]
\task $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{tasks}
\end{document}
答案2
這是我的解決方案:
\documentclass{report}
\usepackage{wrapfig}
\usepackage{multicol}
\usepackage{import}
\pdfminorversion=7
\usepackage{pdfpages}
\usepackage{transparent}
\newcommand{\incfig}[2][]{%
\def\svgwidth{#1\columnwidth}
\import{./figures/}{#2.pdf_tex}
}
\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.
\begin{wrapfigure}[7]{r}{0.4\linewidth}
\centering
\incfig[0.4]{limit-graph}
\caption{$y = g(x)$}
\label{fig:limit_graph}
\end{wrapfigure}
$ $
\begin{multicols}{2}
\begin{enumerate}
\item[\textbf{2.)}] $g(5)$.
\vspace{2cm}
\item[\textbf{10.)}] $g(-2)$.
\vspace{2cm}
\item[\textbf{12.)}] $\lim_{x \to 2^{+}} g(t)$.
\vspace{2cm}
\end{enumerate}\columnbreak\begin{enumerate}
\item[\textbf{3.)}] $\lim_{t \to 5} g(t)$.
\vspace{2cm}
\item[\textbf{11.)}] $\lim_{t \to 2^{-}} g(t)$.
\vspace{2cm}
\item[\textbf{13.)}] $\lim_{x \to -2} g(t)$.
\vspace{2cm}
\end{enumerate}
\end{multicols}
\vspace{1.1cm}
Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}] \\\\
\textbf{19.)} $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{document}
這是輸出:
我沒有改變太多。我只是更改了標題的位置,並明確給出了要環繞的行數,wrapfigure
這樣它就不會繼續環繞下一段。