![對齊子方程式之前的水平空間](https://rvso.com/image/461912/%E5%B0%8D%E9%BD%8A%E5%AD%90%E6%96%B9%E7%A8%8B%E5%BC%8F%E4%B9%8B%E5%89%8D%E7%9A%84%E6%B0%B4%E5%B9%B3%E7%A9%BA%E9%96%93.png)
我使用了對齊的子方程式環境,但由於某種原因,我的方程式在紙張的右側對齊並脫落。我希望它們居中,並在 = 符號處對齊,方程式編號不在方程式的下方而是在方程式的右側。這是我的程式碼:
\documentclass{report}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{geometry}
\geometry{a4paper}
\usepackage{mathtools}
\usepackage{graphicx}
\usepackage{booktabs}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{tikz} %for simple drawings and diagram
\usetikzlibrary{fit,shapes.geometric}
\usetikzlibrary{arrows}
\usetikzlibrary{shapes}
\usepackage{pgfplots}
\usepackage{caption}
\usepackage{subcaption}
%page numbering abstract
\usepackage{etoolbox}
\patchcmd{\abstract}{\titlepage}{\clearpage}{}{}
\patchcmd{\andabstract}{\endtitlepage}{\clearpage}{}{}
%for bibliography
\usepackage{natbib}
\bibliographystyle{apa}
%Includes "References" in the table of contents
\usepackage[nottoc]{tocbibind}
%to use subsections
\usepackage{titlesec}
\titleformat{\chapter}[hang]
{\normalfont\huge\bfseries}
{\thechapter}{20pt}{\huge}
\begin{document}
\chapter{Results}
\section{Elasticity analysis}
\begin{subequations} \allowdisplaybreaks
\begin{align}
\frac{\partial \lambda}{\partial q_{T,1}}&=\frac{q_{T,2}n_Tf_T(1-v)\lambda^3-q_{T,2}n_Tf_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial q_{T,2}}&=\frac{q_{T,1}n_Tf_T(1-v)\lambda^3-q_{T,1}n_Tf_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial q_{L,1}}&=\frac{q_{L,2}n_Lf_L\lambda^3-q_{L,2}n_Lf_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})2\lambda}{denominator} \\
\frac{\partial \lambda}{\partial q_{L,2}}&=\frac{q_{L,1}n_Lf_L\lambda^3-q_{L,1}n_Lf_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})2\lambda}{denominator} \\
\frac{\partial \lambda}{\partial a_{T,1}}&=\frac{s_{T,2}\lambda^3-s_{T,2}(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial s_{T,2}}&=\frac{s_{T,1}\lambda^3-s_{T,1}(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial s_{L,1}}&=\frac{s_{L,2}\lambda^3-(s_{L,2}q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{L,2}s_{T,2}s_{T,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial s_{L,2}}&=\frac{s_{L,1}\lambda^3-(s_{L,1}q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{L,2}s_{T,2}s_{T,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial n_T}&=\frac{q_{T,2}q_{T,1}f_T(1-v)\lambda^3-q_{T,2}q_{T,1}f_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial f_T}&=\frac{q_{T,2}q_{T,1}n_T(1-v)\lambda^3-q_{T,2}q_{T,1}n_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial n_L}&=\frac{q_{L,2}q_{L,1}f_L\lambda^3-q_{L,2}q_{L,1}f_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial f_L}&=\frac{q_{L,2}q_{L,1}n_L\lambda^3-q_{L,2}q_{L,1}n_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial v}&=\frac{-q_{T,2}q_{T,1}n_Tf_T\lambda^3+q_{T,2}q_{T,1}n_Tf_T(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}\lambda^2}{denominator} \\
\text{with }
denominator=4\lambda^3-(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}+q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})3\lambda^2 \\
+(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})2\lambda
\end{align}
\end{subequations}
答案1
我會避免這些分數並將分母移到左側。的意義D可以在單獨的顯示器中。
\documentclass{report}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{geometry}
\geometry{a4paper}
\usepackage{mathtools}
\usepackage{graphicx}
\usepackage{booktabs}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{tikz} %for simple drawings and diagram
\usetikzlibrary{fit,shapes.geometric}
\usetikzlibrary{arrows}
\usetikzlibrary{shapes}
\usepackage{pgfplots}
\usepackage{caption}
\usepackage{subcaption}
%page numbering abstract
\usepackage{etoolbox}
\patchcmd{\abstract}{\titlepage}{\clearpage}{}{}
\patchcmd{\andabstract}{\endtitlepage}{\clearpage}{}{}
%for bibliography
\usepackage{natbib}
\bibliographystyle{apa}
%Includes "References" in the table of contents
\usepackage[nottoc]{tocbibind}
%to use subsections
\usepackage{titlesec}
\titleformat{\chapter}[hang]
{\normalfont\huge\bfseries}
{\thechapter}
{20pt}
{}
\newcommand{\pder}[2]{\frac{\partial#1}{\partial#2}}
\begin{document}
\chapter{Results}
\section{Elasticity analysis}
\begin{subequations} \allowdisplaybreaks
\begin{align}
D\pder{\lambda}{q_{T,1}}&=
q_{T,2}n_Tf_T(1-v)\lambda^3-q_{T,2}n_Tf_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2 \\
D\pder{\lambda}{q_{T,2}}&=
q_{T,1}n_Tf_T(1-v)\lambda^3-q_{T,1}n_Tf_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2 \\
D\pder{\lambda}{q_{L,1}}&=
q_{L,2}n_Lf_L\lambda^3-q_{L,2}n_Lf_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})2\lambda \\
D\pder{\lambda}{q_{L,2}}&=
q_{L,1}n_Lf_L\lambda^3-q_{L,1}n_Lf_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})2\lambda \\
D\pder{\lambda}{a_{T,1}}&=
s_{T,2}\lambda^3-s_{T,2}(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}\lambda^2 \\
D\pder{\lambda}{s_{T,2}}&=
s_{T,1}\lambda^3-s_{T,1}(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}\lambda^2 \\
D\pder{\lambda}{s_{L,1}}&=
s_{L,2}\lambda^3-(s_{L,2}q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{L,2}s_{T,2}s_{T,1})\lambda^2 \\
D\pder{\lambda}{s_{L,2}}&=
s_{L,1}\lambda^3-(s_{L,1}q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{L,2}s_{T,2}s_{T,1})\lambda^2 \\
D\pder{\lambda}{n_T}&=
q_{T,2}q_{T,1}f_T(1-v)\lambda^3-q_{T,2}q_{T,1}f_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2 \\
D\pder{\lambda}{f_T}&=
q_{T,2}q_{T,1}n_T(1-v)\lambda^3-q_{T,2}q_{T,1}n_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2 \\
D\pder{\lambda}{n_L}&=
q_{L,2}q_{L,1}f_L\lambda^3-q_{L,2}q_{L,1}f_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})\lambda^2 \\
D\pder{\lambda}{f_L}&=
q_{L,2}q_{L,1}n_L\lambda^3-q_{L,2}q_{L,1}n_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})\lambda^2 \\
D\pder{\lambda}{v}&=
-q_{T,2}q_{T,1}n_Tf_T\lambda^3+q_{T,2}q_{T,1}n_Tf_T(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}\lambda^2
\end{align}
where
\begin{multline*}
D=4\lambda^3-(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}+q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})3\lambda^2 \\
+(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})2\lambda
\end{multline*}
\end{subequations}
\end{document}