すべての離散状態の合計とすべての連続状態に対する積分を表現したいです。通常、この記号は$\sum$
に を重ねたものです$\int$
。この記号を作成するコマンドはありますか? ない場合は、何らかの方法で合計記号と積分記号を組み合わせて作成できますか?
答え1
これはUnicode 文字「積分付き和」(U+2A0B)(⨋)。STIXフォント(LaTeX サポートは現在ベータ テスト中です。)関連するコマンドは です\sumint
。
答え2
シンボルを構築できます:
\documentclass{article}
\usepackage{amsmath}
\usepackage{graphicx}
\DeclareMathOperator*{\SumInt}{%
\mathchoice%
{\ooalign{$\displaystyle\sum$\cr\hidewidth$\displaystyle\int$\hidewidth\cr}}
{\ooalign{\raisebox{.14\height}{\scalebox{.7}{$\textstyle\sum$}}\cr\hidewidth$\textstyle\int$\hidewidth\cr}}
{\ooalign{\raisebox{.2\height}{\scalebox{.6}{$\scriptstyle\sum$}}\cr$\scriptstyle\int$\cr}}
{\ooalign{\raisebox{.2\height}{\scalebox{.6}{$\scriptstyle\sum$}}\cr$\scriptstyle\int$\cr}}
}
\begin{document}
$\SumInt_{\SumInt} \displaystyle\SumInt$
\end{document}
このMnSymbol
パッケージは以下を提供します\sumint
(使用すると一部のシンボルが変更されます):
\documentclass{article}
\usepackage{MnSymbol}
\begin{document}
$\sumint_{\sumint} \displaystyle\sumint$
\end{document}
答え3
他のオプションはmathtools
パッケージです:
\documentclass{article}
\usepackage{mathtools}
\begin{document}
$\int\mathllap{\sum}$
$\mathclap{\displaystyle\int}\mathclap{\textstyle\sum}$
$F(y)=\mathclap{\displaystyle\int}\mathclap{\textstyle\sum}\;\;\; f(y)\,\mathrm dy$
\end{document}
toheczのコメントで指摘されたシンボルの周りのスペースの問題のため、このTexファイルにはもっと役に立つ例があります。最初の大きな文字の例では、\ooalign{$\textstyle\sum$\cr\hidewidth$\displaystyle\int$\hidewidth\cr}
\documentclass[10]{article}
\usepackage{mathtools}
\usepackage{xcolor}
% Reference shadow equation without \int
\newcommand{\refereq}{
\textcolor{cyan}{
$F(y)= \sum f(y)\,\mathrm dy$
}\par\vspace{-1.41\baselineskip}\par}
\begin{document}
\bigskip
Test inside formula \emph{vs}
normal position of $\scriptstyle\sum$
(cyan shadow without
$\scriptstyle\int$):
\bigskip
{\Huge \refereq
$F(y)=
\mathrlap{\displaystyle\int}
\mathrlap{\textstyle\sum}
\phantom{\mathrlap{\displaystyle\int}
\textstyle\sum}
f(y)\,\mathrm dy$}
\bigskip
Note that different symbol combinations
with {\tt mathtools} have different
spacing effects: \\
\bigskip
\begin{tabular}{l|l|ll}
& Symbol & Size & Alignment \\
1 & $\sum$ x
& \textbackslash{textstyle}
& normal \\
& $\displaystyle\sum$ x
& \textbackslash{display}
& normal\\
2 & $\int$ x
& \textbackslash{textstyle}
& normal \\
& $\displaystyle\int$ x
& \textbackslash{display}
& normal\\
3 & $\int\mathllap{\sum}$ x
& \textbackslash{textstyle}
& \textbackslash{}math{\bf l}lap
\{$\scriptstyle\sum$\} \\
4 & $\displaystyle\int\mathllap{\sum}$ x
& \textbackslash{displaystyle}
& \textbackslash{}math{\bf l}lap
\{$\scriptstyle\sum$\} \\
5 & ${\displaystyle\int}
\mathllap{\sum}$ x
& mixed
& \textbackslash{}math{\bf l}lap
\{$\scriptstyle\sum$\} \\
6 & $\mathclap{\displaystyle\int}\mathclap{\textstyle\sum}$ x
& mixed
& \textbackslash{}math{\bf c}lap (both) \\
7 & $\mathrlap{\displaystyle\int}\textstyle\sum$ x
& mixed
& \textbackslash{}math{\bf r}lap\{$\int$\}\\
8 & $\mathrlap{\displaystyle\int}\mathrlap{\textstyle\sum} $ x
& mixed
& \textbackslash{}math{\bf r}lap (both) \\
9 & $\mathllap{\displaystyle\int}\mathllap{\textstyle\sum}$ x
& mixed
& \textbackslash{}math{\bf l}lap (both) \\
\end{tabular}
\bigskip
Comments:
Note that there are little differences
inside the combined symbol. With respect
(8) in (5) and (9) and even in (6) the
$\int$ is lightly displaced to the
rigth, but in (7) is left displaced.
\bigskip
\refereq
$F(y)=
{\displaystyle\int}\mathllap
{\textstyle\sum}
f(y)\,\mathrm dy$
(5) f is spaced from
$\scriptstyle\int$ but is too
near to $\scriptstyle\sum$
\refereq
$F(y)=
\hspace{.5em}\mathclap{\displaystyle
\int}\mathclap{\textstyle\sum}
\hspace{.5em}
f(y)\,\mathrm dy$
(6) Need extra .5em in both sides
to look as (5).
\refereq
$F(y)=
\mathrlap{\displaystyle\int}
\textstyle\sum
f(y)\,\mathrm dy$
(7) f well spaced from
$\scriptstyle\sum$ (but
$\scriptstyle\int$ is too left?)
\refereq
$F(y)=
\mathrlap{\displaystyle\int}
\mathrlap{\textstyle\sum}
\phantom{\mathrlap{\displaystyle
\int}\textstyle\sum}
f(y)\,\mathrm dy$
(8) Need recover right space
but then fit perfectly.
\refereq
$F(y)=
\phantom{\textstyle\sum}
\mathllap{\displaystyle\int}
\mathllap{\textstyle\sum}
\phantom{\mathrlap{
\displaystyle\int}}
f(y)\,\mathrm dy$
(9) Need recover left space
to see just as (5).
So, better approach (with
{\tt mathtools}, of course),
seem to be (8)
\end{document}
答え4
これはあまり手の込んだ答えではありませんが、カーニングを調整してみるのも選択肢の 1 つです。
\int\kern-1em\sum f(x)dx
また、必ず問い合わせてくださいデテクシファイ2まず、通常は探しているシンボルが表示されますが、残念ながらこの場合は表示されません。