クラスでプレゼンテーションを作成していますbeamer
。次のように書きたいとします。
\begin{equation}
f(x)
\only<1>{= \cos(x)}
\only<2>{= 2\cos(x)}
\end{equation}
スライド 2 では、方程式が長く、そのため方程式が移動してしまうという問題があります。only
を に置き換えるとuncover
、スライド 2 に空白ができてしまいます。
align
環境に関しても私は同じ問題を抱えている
\begin{align}
f(x) &= \exp(x)\\
\only<2>{&= \cos(x)}
\only<3>{&= 2\cos(x)}
\end{align}
方程式の他の部分の配置を変更せずに、方程式の一部を他のものに置き換えるにはどうすればよいですか?
編集
もっと正確に言うと、余分な空白を追加せずに等号の右側 (equation
または) を置き換え、等号を同じ場所に保つ効率的な方法を見つけたいと思います。align
例えば :
\begin{equation}
\cos(x) =
\somecommand<1>{\dfrac{\exp{ix}+\exp{-ix}}{2}}
\somecommand<2>{\sum_{n=0}^{\infty}\dfrac{(-1)^{n}}{2n+1}x^{2n+1}}
...
\somecommand<n>{some other equality with a given lenght}
\end{equation}
\somecommand
の場合\only
、等式全体がスライド 1 から 2 に移動します。\somecommand
の場合\uncover
、スライド 2 の等号とテイラー展開の間に空白ができます。- または
\hphantom
を使用することは解決策になるかもしれませんが、2つ以上のスライドで使用するのは非常に複雑に思えます。\alt
\temporal
答え1
これを行う方法はいくつかあります。以下は、短い方程式の\phantom{<stuff>}
欠落部分を補うために使用する方法の 1 つです。<stuff>
\documentclass{beamer}
\usepackage{amsmath}
\begin{document}
\begin{frame}
\frametitle{A frame}
\begin{equation}
f(x) =
\only<1>{\cos(x)\phantom{2}}
\only<2>{2\cos(x)}
\end{equation}
\end{frame}
\end{document}
の配置は、\phantom{<stuff>}
コンテンツをどのように調べるかによって異なります。たとえば、次のようにすることもできます。
f(x) = \alt<2>{2}{\phantom{2}}\cos(x)
以下も\temporal
参照beamer
ドキュメンテーション。
より大きな構造の場合、私ができる最善の提案は、方程式セット内の最大の要素 (水平方向と垂直方向) を識別し、これをマクロに保存し、別のマクロをスペース調整として使用することです。
\documentclass{beamer}
\usepackage{amsmath}
\newcommand{\inserteqstrut}[1]{%
\rlap{$\displaystyle#1$}%
\phantom{\biggesteq}}
\begin{document}
% Store biggest equation in set
\newcommand{\biggesteq}{\sum_{n=0}^{\infty}\dfrac{(-1)^{n}}{2n+1}x^{2n+1}}
\begin{frame}
\frametitle{A frame}
\begin{equation}
\cos(x) =
\only<1>{\inserteqstrut{\dfrac{\exp{ix}+\exp{-ix}}{2}}}
\only<2>{\inserteqstrut{\biggesteq}}
\only<3>{\inserteqstrut{\text{some equality}}}
\end{equation}
\end{frame}
\end{document}
「最大」を構成する 2 つの別々の方程式がある場合は、\vphantom
(最も高い/最も深い) と\hphantom
(最も広い/最も長い) の組み合わせを使用します。次に例を示します。
\documentclass{beamer}
\usepackage{amsmath}
\newcommand{\inserteqstrut}[1]{%
\rlap{$\displaystyle#1$}%
\phantom{\biggesteq}}
\begin{document}
% Store biggest equation in set
\newcommand{\biggesteq}{%
\vphantom{\sum_{n=0}^{\infty}n}% tallest/deepest
\hphantom{\text{some other equality}}}% longest/widest
\begin{frame}
\frametitle{A frame}
\begin{equation}
\cos(x) =
\only<1>{\inserteqstrut{\tfrac{\exp{ix}+\exp{-ix}}{2}}}
\only<2>{\inserteqstrut{\sum_{n=0}^{\infty}n}}
\only<3>{\inserteqstrut{\text{some other equality}}}
\end{equation}
\end{frame}
\end{document}
答え2
Werner のソリューションの方が明らかにすっきりしていますが、代替オーバーレイの 1 つに余分なスペースを挿入するだけで、手っ取り早く簡単に解決できる場合もあると思います。たとえば、次のコードを使用しました。
\frame{
\frametitle{What: the Perron method}
We split coordinates $x = (x_+, x_-)$%
\uncover<2->{, change the initial time $t_0$ in the unstable part}
\uncover<3->{and let $t_0 \to \infty$}
\begin{alignat*}{2}
x_+(t) &\mapsto
\only<1 |handout:0>{e^{t\,A_+} \cdot x_+(0)\hspace{0.86cm}}
\only<2-3|handout:0>{e^{(t-\alert{t_0})\,A_+} \cdot x_+(\alert{t_0})}
\only<4- >{\qquad\alert{\ldots}\hspace{1.59cm}}
&& \only< -3|handout:0>{+}
\only<4- >{-\,}
\int_{\only<1 |handout:0>{0}
\only<2-3|handout:0>{\alert{\smash{t_0}}\!\!}
\only<4- >{t}}
^{\only<1-3|handout:0>{\smash{t}}
\only<4- >{\alert{\smash{\infty}}}\!\!\!\!}
e^{(t-\tau)\,A_+} \cdot r_+((x_+,x_-)(\tau)) \d\tau,\\
x_-(t) &\mapsto
e^{t\,A_-} \cdot x_-(0)
&&+\int_{0\,}^t e^{(t-\tau)\,A_-} \cdot r_-((x_+,x_-)(\tau)) \d\tau.
\end{alignat*}
\uncover<3->{%
We consider this rewritten map $T$ for bounded curves
$x \in B(\R;\R^n)$ only.
}
}
スライド7を作成するこのビーマープレゼンテーション。
答え3
equation
私は最終的にこの解決策を使用して問題を解決しました(またはを使用したかったため、私の質問と一致していないことはわかっていますalign
)
\documentclass{beamer}
\usepackage{amsmath,amssymb}
\renewcommand*{\a}[1]{\hat a_{#1}^{\vphantom{\dagger}}}
\newcommand*{\ad}[1]{\hat a_{#1}^{\dagger}}
\renewcommand*{\c}[1]{\hat{c}_{#1}^{\vphantom{\dagger}}}
\newcommand*{\cd}[1]{\hat{c}_{#1}^{\dagger}}
\renewcommand*{\H}{\hat{H}}
\newcommand*{\T}{\hat{T}}
\newcommand*{\dsum}[1]{\displaystyle\sum_{#1}}
\newcommand*{\dsumd}[3]{\displaystyle\sum_{#1=#2}^{#3}}
\newcommand*{\dprod}[1]{\displaystyle\prod_{#1}}
\newcommand*{\dprodd}[3]{\displaystyle\prod_{#1=#2}^{#3}}
\newcommand*{\dbigotimesd}[3]{\displaystyle\bigotimes_{#1=#2}^{#3}}
\newcommand*{\dbigoplusd}[3]{\displaystyle\bigoplus_{#1=#2}^{#3}}
\newcommand*{\ket}[1]{\left|#1\right>}
\newcommand*{\ep}[1]{\left(#1\right)}
\renewcommand*{\vec}[1]{\mathbf{#1}}
\renewcommand*{\det}[1]{\mathrm{det}\ep{#1}}
\begin{document}
\begin{frame}
\begin{minipage}[h]{0.4\linewidth}
$
\T
\only<1>{= \dbigoplusd{\alpha}{1}{N}\hat{T}_{\alpha}}
\only<2-3>{= \dbigoplusd{\alpha}{1}{N}\hat{\vec{a}}^{\dagger}_{\alpha}T\hat{\vec{a}}^{\vphantom{\dagger}}_{\alpha}}
\only<4->{= \dbigoplusd{\alpha}{1}{N}\dsumd{i}{1}{n}\omega_{i\alpha}\cd{i\alpha}\c{i\alpha}}
$
\end{minipage}
\hfill
\begin{minipage}[h]{0.5\linewidth}
\uncover<3->{
\begin{align*}
\cd{i\alpha} &= \dsumd{j}{1}{n}U_{ji}^{\alpha}\ad{j\alpha} &
\omega_{i\alpha} &< \omega_{i+1\alpha}
\end{align*}
}
\end{minipage}
\uncover<5->{
$
\uncover<6->{\ket{\Psi_{G}}= }
\only<5->{\uncover<6->{\hat{P}_{G}^{m}}\ket{\Psi}}
\uncover<5->{=\uncover<6->{\hat{P}_{G}^{m}}\dbigotimesd{\alpha}{1}{N}\dprodd{i}{1}{mn/N}\alt<5-6>{\c{i\alpha}}{\dsumd{j}{1}{n}U_{ji}^{\alpha}\ad{j\alpha}}\ket{0}}
\only<10->{\equiv \dsum{\mathcal{C}}\det{U_{\mathcal{C}}}\ket{\mathcal{C}}}
$
}
\begin{center}
\uncover<8->{
$
\ket{\mathcal{C}} \equiv \dbigotimesd{\alpha}{1}{N}\dprodd{i}{1}{mn/N}\ad{i_{\alpha}\alpha}\ket{0}
$
}
\uncover<9->{
$
\dsumd{\alpha}{1}{N}\ad{i\alpha}\a{i\alpha}\ket{\mathcal{C}} = m
\qquad
\dsumd{i}{1}{n}\ad{i\alpha}\a{i\alpha}\ket{\mathcal{C}} = \dsumd{i}{1}{n}\ad{i\beta}\a{i\beta}\ket{\mathcal{C}}
$
}
\end{center}
\end{frame}
\end{document}
これが他の誰かの役に立つことを願っています...