
答え1
試す
\documentclass{article}
\begin{document}
\[
\left| \begin{array}{l}
\alpha \\
\gamma \\
\delta \\
%\displaystyle% for display style of equations had to be added in each row
+ \frac{1}{T-1}\left[\;\int\limits_{\{h<|u_n|\}} |f(x)|^m \right]^{\frac{1}{m}} \dots
\end{array}\right.
\]
\end{document}
方程式を提供していただければ、それを配列に入力できます。
補遺:
David Carlisle が以下のコメントで述べているように、/パッケージaligned
の環境を使用する方が、displaystyle math 環境を備えているため、より良い選択です。amsmath
mathtools
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\[
\left| \begin{aligned}
& \alpha \\
& \beta \\
& \gamma \\
& \delta \\
& + \frac{1}{T-1}\left[\;\int\limits_{\{h<|u_n|\}} |f(x)|^m \right]^{\frac{1}{m}} \dots
\end{aligned}\right.
\]
\end{document}
答え2
ここでは、新しい環境を定義し、 の助けを借りて、タイプセッティング (図では括弧が大きすぎます) とコーディングにいくつかの改善を加えますmathtools
。
また、不等号記号が少し右に移動されているルールのないバージョンも追加しますが、私の意見では、これではルールが役に立たなくなります。
\documentclass{article}
\usepackage{amsmath,mathtools}
\usepackage{newtxtext,newtxmath}
\DeclarePairedDelimiter{\abs}{\lvert}{\rvert}
\DeclarePairedDelimiter{\norm}{\lVert}{\rVert}
\newcommand{\intl}{\int\limits}
\newenvironment{ruledaligned}
{\left|\aligned}
{\endaligned\right.}
\begin{document}
\begin{equation*}
\begin{ruledaligned}
& (2\lambda\alpha-\gamma)
\intl_\Omega \abs{DG_h(u_n)}^2 e^{2\lambda\abs{DG_h(u_n)}}
+\mu\intl_{\{h<\abs{u_n}\}} \abs{u_n}(e^{2\lambda\abs{DG_h(u_n)}}-1)
\\
&\le
T\intl_{\{h<\abs{u_n}\}} \abs{f(x)}(e^{2\lambda\abs{DG_h(u_n)}}-1)^2
+\frac{1}{T-1}\intl_{\{h<\abs{u_n}\}} \abs{f(x)}
\\
&\le
T\Biggl(\,\intl_{\{h<\abs{u_n}\}} \abs{f(x)}^m\Biggr)^{\!\frac{1}{m}}
\Biggl(\,\intl_{\{h<\abs{u_n}\}} (e^{\lambda\abs{DG_h(u_n)}}-1)^{2m'}\Biggr)^{\!\frac{1}{m'}}
+\frac{1}{T-1}\intl_{\{h<\abs{u_n}\}} \abs{f(x)}
\\
&\le
T\Biggl(\,\intl_{\{h<\abs{u_n}\}} \abs{f(x)}^m\Biggr)^{\!\frac{1}{m}}
\norm[\big]{e^{\lambda\abs{DG_h(u_n)}}-1}_{L^{2^*}(\Omega)}^{2\theta}
\Biggl(\,\intl_{\{h<\abs{u_n}\}} (e^{\lambda\abs{DG_h(u_n)}}-1)^2\Biggr)^{\!1-\theta}
\\
&\qquad+
\frac{1}{T-1}\Biggl(\,\intl_{\{h<\abs{u_n}\}} \abs{f(x)}^m\Biggr)^{\!\frac{1}{m}}
\abs[\big]{\{h<\abs{u_n}\}}^{1-\frac{1}{m}}
\end{ruledaligned}
\end{equation*}
\begin{equation*}
\begin{aligned}
& (2\lambda\alpha-\gamma)
\intl_\Omega \abs{DG_h(u_n)}^2 e^{2\lambda\abs{DG_h(u_n)}}
+\mu\intl_{\{h<\abs{u_n}\}} \abs{u_n}(e^{2\lambda\abs{DG_h(u_n)}}-1)
\\
&\quad\le
T\intl_{\{h<\abs{u_n}\}} \abs{f(x)}(e^{2\lambda\abs{DG_h(u_n)}}-1)^2
+\frac{1}{T-1}\intl_{\{h<\abs{u_n}\}} \abs{f(x)}
\\
&\quad\le
T\Biggl(\,\intl_{\{h<\abs{u_n}\}} \abs{f(x)}^m\Biggr)^{\!\frac{1}{m}}
\Biggl(\,\intl_{\{h<\abs{u_n}\}} (e^{\lambda\abs{DG_h(u_n)}}-1)^{2m'}\Biggr)^{\!\frac{1}{m'}}
+\frac{1}{T-1}\intl_{\{h<\abs{u_n}\}} \abs{f(x)}
\\
&\quad\le
T\Biggl(\,\intl_{\{h<\abs{u_n}\}} \abs{f(x)}^m\Biggr)^{\!\frac{1}{m}}
\norm[\big]{e^{\lambda\abs{DG_h(u_n)}}-1}_{L^{2^*}(\Omega)}^{2\theta}
\Biggl(\,\intl_{\{h<\abs{u_n}\}} (e^{\lambda\abs{DG_h(u_n)}}-1)^2\Biggr)^{\!1-\theta}
\\
&\quad\qquad+
\frac{1}{T-1}\Biggl(\,\intl_{\{h<\abs{u_n}\}} \abs{f(x)}^m\Biggr)^{\!\frac{1}{m}}
\abs[\big]{\{h<\abs{u_n}\}}^{1-\frac{1}{m}}
\end{aligned}
\end{equation*}
\end{document}