ランドスケープモードで複数ページのテーブルに対してこのコードを実行する方法

ランドスケープモードで複数ページのテーブルに対してこのコードを実行する方法
\documentclass[12pt,a4paper]{article}
\usepackage{longtable,lscape}
\usepackage{rotating}
\usepackage{multirow,multicol}
\begin{document}
\begin{landscape}
\begin{longtable}{llllll}
\caption{Monolingual Online/Offline Recognition Systems}
\label{Tab:2}       
%\hline\noalign{\smallskip}
\multicolumn{1}{l}{Author} &
   \multicolumn{1}{c}{Script} &
   \multicolumn{1}{c}{Text mode} &
   \multicolumn{1}{c}{classifier}  &
   \multicolumn{1}{c}{Dataset} &
   \multicolumn{1}{c}{Results} 
\\[0.5ex]\hline \hline \\[-2ex]
\endfirsthead
\multicolumn{6}{c}{{\tablename} \thetable{} -- Continued}\\[0.5ex]
  \hline \hline \\[-2ex]
\multicolumn{1}{c}{Author} &
   \multicolumn{1}{c}{Script} &
  \multicolumn{1}{c}{Text mode} &
 \multicolumn{1}{c}{classifier}  &
 \multicolumn{1}{c}{Dataset} &
 \multicolumn{1}{c}{Results}
   \\[0.5ex]\hline \hline \\[-2ex]
\endhead
Rabi et al (2017) & Cursive Arabic &    Offline Handwritten &   HMM & IFN/ENIT  &87.93\% \\ \\
Roy et al (2017) &  Arabic & Offline,Handwritten & Deep belief network with HMM &   IFN/ENIT &  89.46\% \\
Iwana et al(2017) & Latin & Online &    DTW &   UNIPEN digits data &    96.67\% \\
Sen et al (2017) &  Bangla  & Online &  & Handwritten   10,000 character dataset &  95.57\% \\
Bhattacharya et al(2016) &  Bangla& Online  & & 33453 word samples written by 31 writers &  94.3\% \\
Dash et al (2016) & Bangla &    Offline & Binary external symmetry axis constellation with Boolean matching &   ISI kolkata and IITBBS database for Odia numerals, ISI Kolkata bangle numeral and IITBBS odia character database &  99.35\%,98.9\%,99.48\% and 95.01\% respectively accuracy 0.02528 s, 0.02615 s, 0.02392 s, 0.03791s resptive time \\
Pengchao et al (2016) & Chinese & Printed,offline & CNN & 2789965 samples of GB2312-80 database & 99.90\% \\
Zhang et al(2016) & Chinese & Online & Deep CNN & CASIA-OLHWDB 1.0, CASIA-OLHwDB 1.1 &  98.44\% and 98.05\% \\
Sundram et al 2015 & Tamil & Online & Expert SVMs & 15000 handwritten isolated words & 93.0\% and 81.6\% at symbol and word level respectively. \\
Suyyagh et al (2015) &  Arabic & Offline Handwritten & FPGA & IFN/ENIT & 20 times faster than the software implementation and is less accurate by only 2.8\% \\

Arora et al (2014) & Gurumukhi & Offline Printed & SVM with linear and polynomial kernel & 7257 different images & 92.38\% for linear, 85.38\% for polynomial \\
Nguyen et al(2014) & English &  Online & SVM with semi incremental approach & IAM-OnDB &    65.70\% WRR\\
Bral et al(2014) &  Bangla &Online Handwritten & 5890 training set, 3534 test set & 91.6\% \\
A et al (2014) & Devanagari & Online & HMM with Nearest Neighbor classifier & 32,192 samples of 47 characters & 91.38\% \\
%\noalign{\smallskip}\hline\noalign{\smallskip}

%\noalign{\smallskip}\hline\
%\end{tabularx}
\end{longtable}
\end{landscape}

\end{document}

答え1

\\キャプションの後の行を終了するためのがありません:

\caption{Monolingual Online/Offline Recognition Systems}
\label{Tab:2} \\      

答え2

不足している機能に加えて、\\次の MWE によってテーブルにいくつかの改善がもたらされます。

  • ltablex複数ページのテーブルで の列のtabularx使用をサポートするX
  • 水平方向のスペースを節約するためpに列を使用するl
  • 余分な\multcolumn{1}コマンドを削除する
  • siunitx数字と単位の間に一貫した間隔を導入する
  • \hruleスペースコマンドを\midrulesで置き換えて囲む
  • エントリ間に空白を追加して視覚的なガイドとする
  • スペースを節約するためにフォントサイズを小さくする
  • 不足しているスペースを追加しました
  • ...

さらなる改善がまだ必要かもしれません。

\documentclass[12pt,a4paper]{article}
\usepackage{lscape}
\usepackage{ltablex}
\usepackage{siunitx}
\usepackage{ragged2e}
\usepackage{booktabs}
\usepackage{caption}

\begin{document}

{\RaggedRight \renewcommand{\arraystretch}{1.75} \small
\begin{landscape}
\captionsetup{singlelinecheck=off, justification=centering}
\begin{tabularx}{\linewidth}{p{2.5cm}p{2cm}p{2.5cm}XXX}
\caption{Monolingual Online/Offline Recognition Systems}
\label{Tab:2}       \\
\toprule\midrule
Author&
Script&
Text mode&
classifier  &
Dataset &
Results \\
\midrule\midrule
\endfirsthead
\multicolumn{6}{c}{{\tablename} \thetable{} -- Continued}\\ \toprule\midrule
Author&
Script&
Text mode&
classifier  &
Dataset &
Results \\
\midrule\midrule
\endhead
Rabi et al (2017) & Cursive Arabic &    Offline Handwritten &   HMM & IFN/ENIT  &87.93\% \\
Roy et al  (2017) &  Arabic & Offline, Handwritten & Deep belief network with HMM &   IFN/ENIT &  89.46\% \\
Iwana et al (2017) & Latin & Online &    DTW &   UNIPEN digits data &    96.67\% \\
Sen et al  (2017) &  Bangla  & Online &  & Handwritten   10,000 character dataset &  95.57\% \\
Bhattacharya et al (2016) &  Bangla& Online  & & 33453 word samples written by 31 writers &  94.3\% \\
Dash et al (2016) & Bangla &    Offline & Binary external symmetry axis constellation with Boolean matching &   ISI kolkata and IITBBS database for Odia numerals, ISI Kolkata bangle numeral and IITBBS odia character database &  99.35\%, 98.9\%, 99.48\% and 95.01\% respectively accuracy \SI{0.02528}{\s}, \SI{0.02615}{\s}, \SI{0.02392}{\s}, \SI{0.03791}{\s} resptive time \\
Pengchao et al (2016) & Chinese & Printed,offline & CNN & 2789965 samples of GB2312-80 database & 99.90\% \\
Zhang et al (2016) & Chinese & Online & Deep CNN & CASIA-OLHWDB 1.0, CASIA-OLHwDB 1.1 &  98.44\% and 98.05\% \\
Sundram et al (2015) & Tamil & Online & Expert SVMs & 15000 handwritten isolated words & 93.0\% and 81.6\% at symbol and word level respectively. \\
Suyyagh et al (2015) &  Arabic & Offline Handwritten & FPGA & IFN/ENIT & 20 times faster than the software implementation and is less accurate by only 2.8\% \\

Arora et al (2014) & Gurumukhi & Offline Printed & SVM with linear and polynomial kernel & 7257 different images & 92.38\% for linear, 85.38\% for polynomial \\
Nguyen et al (2014) & English &  Online & SVM with semi incremental approach & IAM-OnDB &    65.70\% WRR\\
Bral et al (2014) &  Bangla &Online Handwritten & 5890 training set, 3534 test set & 91.6\% \\
A et al (2014) & Devanagari & Online & HMM with Nearest Neighbor classifier & 32,192 samples of 47 characters & 91.38\% \\

\end{tabularx}
\end{landscape}
}
\end{document}

ここに画像の説明を入力してください

関連情報