2 つの分数を作成しました (下の例を参照) が、分母が除算線に少し近すぎます。これを何らかの方法で変更できますか?
\documentclass{article}
\usepackage{amsmath}
\begin{document}
Combining two Gaussians with mean $\mu_1, \mu_2$ and variance $\sigma_1^2, \sigma_2^2$ yields a new Gaussian with mean $\mu = \frac{\sigma_2^2 \mu_1 + \sigma_1^2 \mu_2}{\sigma_1^2 + \sigma_2^2}$ and variance $\sigma^2 = \frac{1}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}}$
\end{document}
答え1
主に 2 つのオプションがあります。
\frac{...}{...}
-記法からインライン分数記法に切り替える\mu
およびの数式を入力するには、数式表示に切り替えます\sigma^2
。
\documentclass{article}
\usepackage{amsmath} % for "\text" macro
\begin{document}
\noindent
1. OP's original version:
Combining two Gaussians with mean $\mu_1, \mu_2$ and variance $\sigma_1^2, \sigma_2^2$ yields a new Gaussian with mean $\mu = \frac{\sigma_2^2 \mu_1 + \sigma_1^2 \mu_2}{\sigma_1^2 + \sigma_2^2}$ and variance $\sigma^2 = \frac{1}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}}$.
\medskip\noindent
2. Partial switch to inline-math notation
Combining two Gaussians with mean $\mu_1, \mu_2$ and variance
$\sigma_1^2, \sigma_2^2$ yields a new Gaussian with mean
$\mu = \frac{\sigma_2^2 \mu_1 + \sigma_1^2 \mu_2}{\sigma_1^2 + \sigma_2^2}$
and variance $\sigma^2 = \frac{1}{1/\sigma_1^2 + 1/\sigma_2^2}$.
\medskip\noindent
3. Full switch to inline math notation
Combining two Gaussians with means $\mu_1$ and $\mu_2$ and
variances $\sigma_1^2$ and $\sigma_2^2$ yields a new Gaussian
with mean $\mu = (\sigma_2^2 \mu_1 + \sigma_1^2 \mu_2)/(\sigma_1^2 +
\sigma_2^2)$ and variance $\sigma^2 = 1/(1/\sigma_1^2 + 1/\sigma_2^2)$.
\medskip\noindent
4. Switch to display math
Combining two Gaussians with means $\mu_1$ and $\mu_2$ and
variances $\sigma_1^2$ and $\sigma_2^2$ yields a new Gaussian
with mean $\mu$ and variance $\sigma^2$ given by
\[
\mu=\frac{\sigma_2^2 \mu_1 + \sigma_1^2 \mu_2}{\sigma_1^2 + \sigma_2^2}
\quad\text{and}\quad
\sigma^2 = \frac{1}{1/\sigma_1^2 + 1/\sigma_2^2}\,.
\]
\end{document}
答え2
ここでは、分数を本来の のままにしています\textstyle
が、各分数の分子と分母の上下に (デフォルトの) 1 ポイントのバッファを追加しています。これはオプションの引数で変更できます。これを と呼びます\qfrac[]{}{}
。MWE は前後を示しています。
\documentclass{article}
\usepackage{stackengine,scalerel}
\stackMath
\newcommand\qfrac[3][1pt]{\frac{%
\ThisStyle{\addstackgap[#1]{\SavedStyle#2}}}{%
\ThisStyle{\addstackgap[#1]{\SavedStyle#3}}%
}}
\usepackage{amsmath}
\begin{document}
Combining two Gaussians with mean $\mu_1, \mu_2$ and variance $\sigma_1^2,
\sigma_2^2$ yields a new Gaussian with mean $\mu = \frac{\sigma_2^2 \mu_1 +
\sigma_1^2 \mu_2}{\sigma_1^2 + \sigma_2^2}$ and variance $\sigma^2 =
\frac{1}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}}$
Combining two Gaussians with mean $\mu_1, \mu_2$ and variance $\sigma_1^2,
\sigma_2^2$ yields a new Gaussian with mean $\mu = \qfrac{\sigma_2^2 \mu_1 +
\sigma_1^2 \mu_2}{\sigma_1^2 + \sigma_2^2}$ and variance $\sigma^2 =
\qfrac[.5pt]{1}{\qfrac{1}{\sigma_1^2} + \qfrac{1}{\sigma_2^2}}$
\end{document}
答え3
あるいは、 \raisebox を使用します。
\documentclass{article}
\usepackage{amsmath}
\begin{document}
Combining two Gaussians with mean $\mu_1, \mu_2$ and variance $\sigma_1^2, \sigma_2^2$ yields a new Gaussian with mean $\mu = \frac{\raisebox{.2in}{$\sigma_2^2 \mu_1 + \sigma_1^2 \mu_2$}}{\raisebox{-.2in}{$\sigma_1^2 + \sigma_2^2$}}$ and variance $\sigma^2 = \frac{\raisebox{.2in}{$1$}}{\raisebox{-.2in}{$\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}$}}$
\end{document}