Gute Satzpraxis für lange Gleichungen

Gute Satzpraxis für lange Gleichungen

Ich habe die folgende (ziemlich schreckliche) Gleichung in meiner Abschlussarbeit:

\begin{align*}
\frac{\partial^2}{\partial t_1^2} f(t_0,t_1) = 
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1 )-1} \cdot \bigl(  
\frac{\partial^2}{\partial t_1^2}\alpha(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  \log ( \delta+2t_0+2t_1) +\\
\alpha'(w-t_0+t_1) \cdot 2 \cdot  \log ( \delta+2t_0+2t_1)+
\alpha'(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  \frac{2}{\delta+2t_0+2t_1} +\\
2 \frac{\partial}{\partial t_1} \alpha( w-t_0+t_1 ) \bigr) +
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1 )-2}\cdot\\
 \bigl( \frac{\partial}{\partial t_1} \alpha(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot \log ( \delta+2t_0+2t_1) + (\alpha (w-t_0+t_1) -2) \bigr) \cdot \\
\bigl( \alpha'(w -t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  \log ( \delta+2t_0+2t_1) +
2\alpha( w-t_0+t_1)\bigr) = \\
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1 )-1} \cdot \Bigl( 
 \frac{\partial^2}{\partial t_1^2}\alpha(w -t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  \log ( \delta+2t_0+2t_1) +\\
2 \cdot \alpha'(w-t_0+t_1)  \cdot  \bigl( 2 + \log ( \delta+2t_0+2t_1) \bigr) \Bigr) +
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1)-2} \cdot \Bigl( \\
\alpha '(w-t_0+t_1) \cdot 
(\delta + 2t_0+2t_1) \cdot \log (\delta + 2t_0+2t_1) +  
\bigl(\alpha (w-t_0+t_1) -2) \bigr) \cdot
 \bigl(   \\
\alpha'(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  \log ( \delta+2t_0+2t_1) +2\alpha( w-t_0+t_1)\bigr) \Bigr)  < 0
\end{align*}

Bei Verwendung genau dieses Codestücks ohne spezielle Formatierungsbefehle wie & oder \[2mm] ist der resultierende mathematische Text völlig unlesbar: Die gleichung

Wie würden Sie solche Gleichungen in LaTeX formatieren und was ist Ihrer Meinung nach eine gute Vorgehensweise beim Satz derart großer Gleichungen?

Antwort1

Ich würde versuchen, die Gleichung durch Gruppieren der Teile zu verkleinern:

  • Nicht verwenden, \cdotwenn es nicht nötig ist. Ich verwende es nur für Skalarprodukte von Vektoren und für Zahlen, aber nicht für symbolische Faktoren oder vor Klammern.
  • Ableitungen werden oft als \partial_{t_1}statt geschrieben \frac{\partial}{\partial t_1}. Dadurch kann Platz gespart werden.
  • Die Einführung von Substitutionen kann hilfreich sein. In Ihrem Code (\delta+2t_0+2t_1)kommt es recht häufig vor und könnte durch ein neues Symbol ersetzt werden, das vor oder nach der Gleichung definiert wird
  • Richten Sie die Gleichung zumindest an allen Gleichheitszeichen aus:&=
  • Weitere Zeilenumbrüche können vor +Zeichen stehen, um Summanden zu „gruppieren“ (dies zeigt, dass die Gleichung aus ähnlichen Teilen besteht, die addiert werden).

Antwort2

Bildbeschreibung hier eingeben

BrechenVornicht nach Operatoren und definierenden Namen für die Unterbegriffe

\documentclass{article}
\usepackage{amsmath}

\begin{document}


\begin{align*}
\frac{\partial^2}{\partial t_1^2} f(t_0,t_1)
 &= 
b^{a-1} \cdot \bigl(  
\frac{\partial^2}{\partial t_1^2}a \cdot b \cdot  \log ( b) +
a' \cdot 2 \cdot  \log ( b)+
a' \cdot b \cdot  \frac{2}{b} +
2 \frac{\partial}{\partial t_1} a \bigr) \\
 &\quad+
 b^{a-2}\cdot
 \bigl( \frac{\partial}{\partial t_1}a \cdot b \cdot \log ( b) + (a -2) \bigr) \cdot 
\bigl( a' \cdot b \cdot  \log ( b) + 2a\bigr)\\
  & = 
b^{a-1} \cdot \Bigl( 
 \frac{\partial^2}{\partial t_1^2}a \cdot  b \cdot  \log ( b) +
2 \cdot a'  \cdot  \bigl( 2 + \log ( b) \bigr) \Bigr)\\
&\quad +
b^{a-2} \cdot \bigl(a' \cdot 
c \cdot \log (c) +  
\bigl(a -2) \bigr) \cdot
 \bigl(a' \cdot  b \cdot  \log ( b) +2a)\bigr)\bigr)\\
  &< 0
\end{align*}
where:\\
$a=\alpha( w-t_0+t_1 )$\\
$a'=\alpha'(w-t_0+t_1)$\\
$b=\delta+2t_0+2t_1$\\
$c=\delta + 2t_0+2t_1$
\end{document}

Antwort3

Eigentlich möchte ich meine Antwort mit einer Frage beginnen: Ist es sehr informativ, eine so lange Gleichung anzuzeigen?

Ich würde versuchen, Teile in Ihrer Gleichung zu identifizieren und etwas wie folgt schreiben:

\[a (A + B + C) < 0\]
where
\[a = ... \]
and
\begin{align} 
A &= ... \\
B &= ... \\
C &= ...
\end{align}

Dies erleichtert die Lesbarkeit erheblich und Sie können evtl. auch zu jedem Begriff eine Erklärung angeben.

Antwort4

Versuchen Sie, das breqnPaket zu verwenden. Beginnen Sie mit usepackage{breqn}und ersetzen Sie dann die align*Umgebung durch dmath*. Entfernen Sie dann alle manuellen Zeilenumbrüche \\, da breqnZeilenumbrüche und Ausrichtung automatisch erfolgen. Sie können auch \biglund \bigrdurch \leftund ersetzen \right, da breqnZeilenumbrüche innerhalb eines -Paares zulässig \leftsind \right.

\documentclass{article}
\usepackage{breqn}  % from the "mh" bundle

\begin{document}

\begin{dmath*}
\frac{\partial^2}{\partial t_1^2} f(t_0,t_1) = 
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1 )-1} \cdot \left(  
\frac{\partial^2}{\partial t_1^2}\alpha(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  
\log ( \delta+2t_0+2t_1) +
\alpha'(w-t_0+t_1) \cdot 2 \cdot  \log ( \delta+2t_0+2t_1)+
\alpha'(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  \frac{2}{\delta+2t_0+2t_1} +
2 \frac{\partial}{\partial t_1} \alpha( w-t_0+t_1 ) \right) +
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1 )-2}\cdot
 \left( \frac{\partial}{\partial t_1} \alpha(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) 
\cdot \log ( \delta+2t_0+2t_1) + (\alpha (w-t_0+t_1) -2) \right) \cdot 
\left( \alpha'(w -t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  \log ( \delta+2t_0+2t_1) +
2\alpha( w-t_0+t_1)\right) = 
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1 )-1} \cdot \left( 
\frac{\partial^2}{\partial t_1^2}\alpha(w -t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  
\log ( \delta+2t_0+2t_1) +
2 \cdot \alpha'(w-t_0+t_1)  \cdot  \left( 2 + \log ( \delta+2t_0+2t_1) \right) \right)
+ ( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1)-2} \cdot \Bigl( 
\alpha '(w-t_0+t_1) \cdot 
(\delta + 2t_0+2t_1) \cdot \log (\delta + 2t_0+2t_1) +  
\left(\alpha (w-t_0+t_1) -2 \right) \cdot
 \left(   
\alpha'(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  \log ( \delta+2t_0+2t_1) +2\alpha(
 w-t_0+t_1)\right) \Bigr)  < 0
\end{dmath*}
\end{document}

verwandte Informationen