Die Matrixbeschriftung funktioniert in TikZ nicht

Die Matrixbeschriftung funktioniert in TikZ nicht

Ich bin auf diesen Code gestoßen, der sehr hilfreich ist. Wenn ich den Code jedoch ausführe, tritt ein Fehler in Bezug auf alle Knoten auf(zum Beispiel ist keine Form benannt A-2-1), ich weiß nicht, wo das Problem liegt, da die Art und Weise, wie die Knoten beschriftet sind, mit anderen Codes gut funktioniert. Irgendeine Idee, wo hier das Problem liegt?

% Author : Alain Matthes
% Source : http://altermundus.com/pages/examples.html
\documentclass[]{article}

\usepackage[utf8]{inputenc}
\usepackage[upright]{fourier}
\usepackage{tikz}
\usetikzlibrary{matrix,arrows,decorations.pathmorphing}
\begin{document}

% l' unite
\newcommand{\myunit}{1 cm}
\tikzset{
    node style sp/.style={draw,circle,minimum size=\myunit},
    node style ge/.style={circle,minimum size=\myunit},
    arrow style mul/.style={draw,sloped,midway,fill=white},
    arrow style plus/.style={midway,sloped,fill=white},
}

\begin{tikzpicture}[>=latex]
% les matrices
\matrix(A)[matrix of math nodes,%
             nodes = {node style ge},%
             left delimiter  = (,%
             right delimiter = )] at (0,0)
{%
  a_{11} & a_{12} & \ldots & a_{1p}  \\
  \node[node style sp] {a_{21}};%
         & \node[node style sp] {a_{22}};%
                  & \ldots%
                           & \node[node style sp] {a_{2p}}; \\
  \vdots & \vdots & \ddots & \vdots  \\
  a_{n1} & a_{n2} & \ldots & a_{np}  \\
};
\node [draw,below=10pt] at (A.south) 
    { $A$ : \textcolor{red}{$n$ rows} $p$ columns};

\matrix (B) [matrix of math nodes,%
             nodes = {node style ge},%
             left delimiter  = (,%
             right delimiter =)] at (6*\myunit,6*\myunit)
{%
  b_{11} & \node[node style sp] {b_{12}};%
                  & \ldots & b_{1q}  \\
  b_{21} & \node[node style sp] {b_{22}};%
                  & \ldots & b_{2q}  \\
  \vdots & \vdots & \ddots & \vdots  \\
  b_{p1} & \node[node style sp] {b_{p2}};%
                  & \ldots & b_{pq}  \\
};
\node [draw,above=10pt] at (B.north) 
    { $B$ : $p$ rows \textcolor{red}{$q$ columns}};
% matrice résultat
\matrix (C) [matrix of math nodes,%
             nodes = {node style ge},%
             left delimiter  = (,%
             right delimiter = )] at (6*\myunit,0)
{%
  c_{11} & c_{12} & \ldots & c_{1q} \\
  c_{21} & \node[node style sp,red] {c_{22}};%
                  & \ldots & c_{2q} \\
  \vdots & \vdots & \ddots & \vdots \\
  c_{n1} & c_{n2} & \ldots & c_{nq} \\
};
% les fleches
\draw[blue] (A-2-1.north) -- (C-2-2.north);
\draw[blue] (A-2-1.south) -- (C-2-2.south);
\draw[blue] (B-1-2.west)  -- (C-2-2.west);
\draw[blue] (B-1-2.east)  -- (C-2-2.east);
\draw[<->,red](A-2-1) to[in=180,out=90]
    node[arrow style mul] (x) {$a_{21}\times b_{12}$} (B-1-2);
\draw[<->,red](A-2-2) to[in=180,out=90]
    node[arrow style mul] (y) {$a_{22}\times b_{22}$} (B-2-2);
\draw[<->,red](A-2-4) to[in=180,out=90]
    node[arrow style mul] (z) {$a_{2p}\times b_{p2}$} (B-4-2);
\draw[red,->] (x) to node[arrow style plus] {$+$} (y)%
                  to node[arrow style plus] {$+\raisebox{.5ex}{\ldots}+$} (z)%
                  to (C-2-2.north west);


\node [draw,below=10pt] at (C.south) 
    {$ C=A\times B$ : \textcolor{red}{$n$ rows}  \textcolor{red}{$q$ columns}};

\end{tikzpicture}

\begin{tikzpicture}[>=latex]
% unit
% defintion of matrices
\matrix (A) [matrix of math nodes,%
             nodes = {node style ge},%
             left delimiter  = (,%
             right delimiter = )] at (0,0)
{%
  a_{11} &\ldots & a_{1k} & \ldots & a_{1p}  \\
    \vdots & \ddots & \vdots & \vdots & \vdots \\
  \node[node style sp] {a_{i1}};& \ldots%
         & \node[node style sp] {a_{ik}};%
                  & \ldots%
                           & \node[node style sp] {a_{ip}}; \\
  \vdots & \vdots& \vdots & \ddots & \vdots  \\
  a_{n1}& \ldots & a_{nk} & \ldots & a_{np}  \\
};
\node [draw,below] at (A.south) { $A$ : \textcolor{red}{$n$ rows} $p$ columns};
\matrix (B) [matrix of math nodes,%
             nodes = {node style ge},%
             left delimiter  = (,%
             right delimiter =)] at (7*\myunit,7*\myunit)
{%
  b_{11} &  \ldots& \node[node style sp] {b_{1j}};%
                  & \ldots & b_{1q}  \\
  \vdots& \ddots & \vdots & \vdots & \vdots \\
  b_{k1} &  \ldots& \node[node style sp] {b_{kj}};%
                  & \ldots & b_{kq}  \\
  \vdots& \vdots & \vdots & \ddots & \vdots \\
  b_{p1} &  \ldots& \node[node style sp] {b_{pj}};%
                  & \ldots & b_{pq}  \\
};
\node [draw,above] at (B.north) { $B$ : $p$ rows \textcolor{red}{$q$ columns}};
% matrice resultat
\matrix (C) [matrix of math nodes,%
             nodes = {node style ge},%
             left delimiter  = (,%
             right delimiter = )] at (7*\myunit,0)
{%
  c_{11} & \ldots& c_{1j} & \ldots & c_{1q} \\
  \vdots& \ddots & \vdots & \vdots & \vdots \\
    c_{i1}& \ldots & \node[node style sp,red] {c_{ij}};%
                  & \ldots & c_{iq} \\
  \vdots& \vdots & \vdots & \ddots & \vdots \\
  c_{n1}& \ldots & c_{nk} & \ldots & c_{nq} \\
};
\node [draw,below] at (C.south) 
    {$ C=A\times B$ : \textcolor{red}{$n$ rows}  \textcolor{red}{$q$ columns}};
% arrows
\draw[blue] (A-3-1.north) -- (C-3-3.north);
\draw[blue] (A-3-1.south) -- (C-3-3.south);
\draw[blue] (B-1-3.west)  -- (C-3-3.west);
\draw[blue] (B-1-3.east)  -- (C-3-3.east);
\draw[<->,red](A-3-1) to[in=180,out=90] 
    node[arrow style mul] (x) {$a_{i1}\times b_{1j}$} (B-1-3);
\draw[<->,red](A-3-3) to[in=180,out=90] 
    node[arrow style mul] (y) {$a_{ik}\times b_{kj}$}(B-3-3);
\draw[<->,red](A-3-5) to[in=180,out=90] 
    node[arrow style mul] (z) {$a_{ip}\times b_{pj}$}(B-5-3);
\draw[red,->] (x) to node[arrow style plus] {$+\raisebox{.5ex}{\ldots}+$} (y)%
                  to node[arrow style plus] {$+\raisebox{.5ex}{\ldots}+$} (z);
                  %
                  % to (C-3-3.north west);
\draw[->,red,decorate,decoration=zigzag] (z) -- (C-3-3.north west);
\end{tikzpicture}
\end{document}

Antwort1

\node[node style sp] {a_{21}};Schreiben Sie stattdessen |[node style sp]| {a_{21}}:

\documentclass[]{article}

\usepackage[utf8]{inputenc}
\usepackage[upright]{fourier}
\usepackage{tikz}
\usetikzlibrary{arrows,matrix,decorations.pathmorphing}
\begin{document}

% l' unite
\newcommand{\myunit}{1 cm}
\tikzset{
    node style sp/.style={draw,circle,minimum size=\myunit},
    node style ge/.style={circle,minimum size=\myunit},
    arrow style mul/.style={draw,sloped,midway,fill=white},
    arrow style plus/.style={midway,sloped,fill=white},
}

\begin{tikzpicture}[>=latex]
% les matrices
\matrix (A) [matrix of math nodes,%
             nodes = {node style ge},%
             left delimiter  = (,%
             right delimiter = )]
{%
  a_{11} & a_{12} & \ldots & a_{1p}  \\
  |[node style sp]| {a_{21}}%
         & |[node style sp]| {a_{22}}%
                  & \ldots%
                           & |[node style sp]| {a_{2p}} \\
  \vdots & \vdots & \ddots & \vdots  \\
  a_{n1} & a_{n2} & \ldots & a_{np}  \\
};
\node [draw,below=10pt] at (A.south)
    { $A$ : \textcolor{red}{$n$ rows} $p$ columns};

\matrix (B) [matrix of math nodes,%
             nodes = {node style ge},%
             left delimiter  = (,%
             right delimiter =)] at (6*\myunit,6*\myunit)
{%
  b_{11} & |[node style sp]| {b_{12}}%
                  & \ldots & b_{1q}  \\
  b_{21} & |[node style sp]| {b_{22}}%
                  & \ldots & b_{2q}  \\
  \vdots & \vdots & \ddots & \vdots  \\
  b_{p1} & |[node style sp]| {b_{p2}}%
                  & \ldots & b_{pq}  \\
};
\node [draw,above=10pt] at (B.north)
    { $B$ : $p$ rows \textcolor{red}{$q$ columns}};
% matrice resultat
\matrix (C) [matrix of math nodes,%
             nodes = {node style ge},%
             left delimiter  = (,%
             right delimiter = )] at (6*\myunit,0)
{%
  c_{11} & c_{12} & \ldots & c_{1q} \\
  c_{21} & |[node style sp,red]| {c_{22}}%
                  & \ldots & c_{2q} \\
  \vdots & \vdots & \ddots & \vdots \\
  c_{n1} & c_{n2} & \ldots & c_{nq} \\
};
% les fleches
\draw[blue] (A-2-1.north) -- (C-2-2.north);
\draw[blue] (A-2-1.south) -- (C-2-2.south);
\draw[blue] (B-1-2.west)  -- (C-2-2.west);
\draw[blue] (B-1-2.east)  -- (C-2-2.east);
\draw[<->,red](A-2-1) to[in=180,out=90]
    node[arrow style mul] (x) {$a_{21}\times b_{12}$} (B-1-2);
\draw[<->,red](A-2-2) to[in=180,out=90]
    node[arrow style mul] (y) {$a_{22}\times b_{22}$} (B-2-2);
\draw[<->,red](A-2-4) to[in=180,out=90]
    node[arrow style mul] (z) {$a_{2p}\times b_{p2}$} (B-4-2);
\draw[red,->] (x) to node[arrow style plus] {$+$} (y)%
                  to node[arrow style plus] {$+\raisebox{.5ex}{\ldots}+$} (z)%
                  to (C-2-2.north west);


\node [draw,below=10pt] at (C.south)
    {$ C=A\times B$ : \textcolor{red}{$n$ rows}  \textcolor{red}{$q$ columns}};
\end{tikzpicture}
\end{document}

Bildbeschreibung hier eingeben

Antwort2

Die Matrix ist als eine Menge von Knoten definiert, die bereits

\matrix(A)[matrix of math nodes,%

Daher verschachtelt der zweite Befehl unten den Knoten innerhalb des ersten Knotens, was unzulässig ist

  \node[node style sp] {a_{21}};%

Wenn Sie dies also beabsichtigen, muss der zweite /verschachtelte Knoten mit einem anderen Alias ​​aufgerufen werden und nicht mit A-2-1, das für die Hauptmatrix (A) steht.

Ich habe dem zweiten verschachtelten Knoten einen separaten Namen (A-2-1) gegeben - ebenso wird für die Matrix (C) dem zweiten verschachtelten Knoten bei (C-2-2) ein separater Name gegeben

Wenn Sie jetzt den Befehl „Draw“ zwischen diesen beiden Knoten verwenden, tritt kein Fehler auf

\draw[blue] (A-2-1.north) -- (C-2-2.north);

und Sie erhalten die resultierende Zahl wie unten

Bildbeschreibung hier eingeben

Sie können auch Aliase verwenden, wie im folgenden Link beschrieben ==

Wie zeichne ich horizontale und vertikale Linien für eine TikZ-Matrix

verwandte Informationen