Platzieren Sie die Abbildung neben zwei aufgezählten Umgebungen, nebeneinander

Platzieren Sie die Abbildung neben zwei aufgezählten Umgebungen, nebeneinander

Das hier hätte ich gerne: Bildbeschreibung hier eingeben

Das ist, was ich derzeit habe:

\documentclass{report}

\usepackage{wrapfig}
\usepackage{multicol}
\usepackage{import}
\pdfminorversion=7
\usepackage{pdfpages}
\usepackage{transparent}
\newcommand{\incfig}[2][]{%
  \def\svgwidth{#1\columnwidth}
  \import{./figures/}{#2.pdf_tex}
}

\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.

\begin{wrapfigure}{r}{0.4\linewidth}
  \centering
  \caption{$y = g(x)$}
  \incfig[0.4]{limit-graph}
  \label{fig:limit_graph}
\end{wrapfigure}
$ $
\begin{multicols}{2}
  \begin{enumerate}
    \item[\textbf{2.)}] $g(5)$.
      \vspace{2cm}
    \item[\textbf{10.)}] $g(-2)$.
      \vspace{2cm}
    \item[\textbf{12.)}] $\lim_{x \to 2^{+}} g(t)$.
      \vspace{2cm}
    \end{enumerate}\columnbreak\begin{enumerate}
    \item[\textbf{3.)}] $\lim_{t \to 5} g(t)$.
      \vspace{2cm}
    \item[\textbf{11.)}] $\lim_{t \to 2^{-}} g(t)$.
      \vspace{2cm}
    \item[\textbf{13.)}] $\lim_{x \to -2} g(t)$.
      \vspace{2cm}
  \end{enumerate}
\end{multicols}

Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}] \\\\

\textbf{19.)} $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{document}

Aber das ist die Ausgabe:

Bildbeschreibung hier eingeben

Was mache ich falsch?

Antwort1

Ich schlage vor, das Aufgabenpaket zu verwenden und das Diagramm auf einer Miniseite einzufügen

    %https://tex.stackexchange.com/questions/661529/place-figure-next-to-two-enumerate-enivronments-side-by-side
    \documentclass{report}
    \usepackage{tasks}
    \usepackage{graphicx}


    \parindent=0pt
    \settasks{label=\bfseries\arabic*.),label-width=2em}
    \begin{document}
    Copy each of the following expressions onto your paper and either state the
    value or state that the value is undefined or doesn't exist. Make sure that
    when discussing the values you use proper terminology. All expressions are in
    reference to the function $g$ shown in Figure.

    \begin{minipage}[t]{0.6\linewidth}
        \vspace{0pt}
    \begin{tasks}[start=2](2)
        \task $g(5)$.
        \vspace{2cm}
        \task $g(-2)$.
        \vspace{2cm}
    \end{tasks}
    \begin{tasks}[start=10](2)
        \task $\lim_{x \to 2^{+}} g(t)$.
        \vspace{2cm}
        \task $\lim_{t \to 5} g(t)$.
        \vspace{2cm}
        \task $\lim_{t \to 2^{-}} g(t)$.
        \vspace{2cm}
        \task $\lim_{x \to -2} g(t)$.
        \vspace{2cm}
    \end{tasks}
    \end{minipage}%
    \begin{minipage}[t]{0.4\linewidth}
        \vspace{0pt}
        \centering
        \includegraphics[width=\linewidth]{example-image-duck}
        $y = g(x)$
    \end{minipage}

    Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
    each of the following limit values. Make sure that you include table numbers,
    table captions, and meaningful column headings. Make sure that your input
    values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
    sure that you round your output values in such a way that a clear and
    compelling pattern in the output is clearly demonstrated by your stated
    values. Make sure that you state the limit value!
    [\textbf{\textit{2pts}}] 

    \begin{tasks}[start=19](2)
    \task $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
    \end{tasks}
    \end{document}

BEARBEITEN2Problemraum Eine bessere Lösung mit Paracol.

Die Debug-Option des Pakets ist sehr interessant

            %https://tex.stackexchange.com/questions/661529/place-figure-next-to-two-enumerate-enivronments-side-by-side
            \documentclass{report}
            \usepackage{graphicx}
            \usepackage{tasks}
            \usepackage{paracol}

            \parindent=0pt
            \settasks{label=\bfseries\arabic*.),label-width=2em,before-skip = 0pt,after-skip=2cm,after-item-skip = 2cm,debug}
            %\settasks{label=\bfseries\arabic*.),label-width=2em,before-skip = 0pt,after-skip=2cm,after-item-skip = 2cm}
            \begin{document}

            Copy each of the following expressions onto your paper and either state the
            value or state that the value is undefined or doesn't exist. Make sure that
            when discussing the values you use proper terminology. All expressions are in
            reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.

            \smallskip
            \begin{paracol}{2}
        \begin{tasks}[start=2](2)
        \task $g(5)$.
        \task $g(-2)$.
    \end{tasks}
    \begin{tasks}[start=10](2)
        \task $\lim_{x \to 2^{+}} g(t)$.
        \task $\lim_{t \to 5} g(t)$.
        \task $\lim_{t \to 2^{-}} g(t)$.
        \task $\lim_{x \to -2} g(t)$.
    \end{tasks}
    \switchcolumn
    \begin{figure}
    \includegraphics[width=\linewidth,height=7cm]{example-image-duck}
    \caption{$y = g(x)$}
    \label{fig:limit_graph}    
    \end{figure}
    \end{paracol}       

            Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
            each of the following limit values. Make sure that you include table numbers,
            table captions, and meaningful column headings. Make sure that your input
            values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
            sure that you round your output values in such a way that a clear and
            compelling pattern in the output is clearly demonstrated by your stated
            values. Make sure that you state the limit value!
            [\textbf{\textit{2pts}}] 

            \begin{tasks}[start=19]
            \task $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
            \end{tasks}
            \end{document}

Antwort2

Hier ist meine Lösung:

\documentclass{report}

\usepackage{wrapfig}
\usepackage{multicol}
\usepackage{import}
\pdfminorversion=7
\usepackage{pdfpages}
\usepackage{transparent}
\newcommand{\incfig}[2][]{%
  \def\svgwidth{#1\columnwidth}
  \import{./figures/}{#2.pdf_tex}
}

\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.

\begin{wrapfigure}[7]{r}{0.4\linewidth}
  \centering
  \incfig[0.4]{limit-graph}
  \caption{$y = g(x)$}
  \label{fig:limit_graph}
\end{wrapfigure}
$ $
\begin{multicols}{2}
  \begin{enumerate}
    \item[\textbf{2.)}] $g(5)$.
      \vspace{2cm}
    \item[\textbf{10.)}] $g(-2)$.
      \vspace{2cm}
    \item[\textbf{12.)}] $\lim_{x \to 2^{+}} g(t)$.
      \vspace{2cm}
    \end{enumerate}\columnbreak\begin{enumerate}
    \item[\textbf{3.)}] $\lim_{t \to 5} g(t)$.
      \vspace{2cm}
    \item[\textbf{11.)}] $\lim_{t \to 2^{-}} g(t)$.
      \vspace{2cm}
    \item[\textbf{13.)}] $\lim_{x \to -2} g(t)$.
      \vspace{2cm}
  \end{enumerate}
\end{multicols}
\vspace{1.1cm}

Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}] \\\\

\textbf{19.)} $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{document}

Hier ist die Ausgabe:

Bildbeschreibung hier eingeben

Ich habe nicht viel geändert. Ich habe nur die Position der Überschrift geändert und explizit die Zeilenanzahl angegeben, um die sie umgebrochen werden soll, wrapfiguredamit sie nicht um den nächsten Absatz herum umgebrochen wird.

verwandte Informationen