Keines der vorhandenen Beispiele, die ich zum Auflisten von Gleichungen gefunden habe, enthält die Gleichungen in der \align-Umgebung. Wie kann ich auch beide Gleichungstypen in dieselbe Gleichungsliste aufnehmen? Hier ist ein MWE:
\documentclass[english]{article}
\setcounter{secnumdepth}{2}
%\setcounter{tocdepth}{1}
\usepackage{amsmath}
\usepackage{tocloft}
\usepackage{xstring}
\usepackage[unicode=true, pdfusetitle,
bookmarks=true,bookmarksnumbered=false,bookmarksopen=false,
breaklinks=false,pdfborder={0 0 0},backref=false,colorlinks=false]
{hyperref}
\makeatletter
\numberwithin{equation}{section}
% we use this for our refernces as well
\AtBeginDocument{\renewcommand{\ref}[1]{\mbox{\autoref{#1}}}}
% redefinition of \equation for convenience
\let\oldequation = \equation
\let\endoldequation = \endequation
\AtBeginDocument{\let\oldlabel = \label}% \AtBeginDocument because hyperref redefines \label
\newcommand{\mynewlabel}[1]{%
\StrBehind{#1}{eq:}[\Str]% remove "eq:" from labels
\myequations{\Str}\oldlabel{#1}}
\renewenvironment{equation}{%
\oldequation
\let\label\mynewlabel
}{\endoldequation}
% redefinition of \eqnarray for convenience
\let\oldeqnarray = \eqnarray
\let\endoldeqnarray = \endeqnarray
%\AtBeginDocument{\let\oldlabel = \label}% \AtBeginDocument because hyperref redefines \label
\newcommand{\mynewlabelarray}[1]{%
\StrBehind{#1}{eq:}[\Str]% remove "eq:" from labels
\myequations{\Str}\oldlabel{#1}}
\renewenvironment{eqnarray}{%
\oldeqnarray
\let\label\mynewlabelarray
}{\endoldeqnarray}
\newcommand{\listequationsname}{\normalsize List of Equations}
\newlistof{myequations}{equ}{\listequationsname}
\newcommand{\myequations}[1]{%
\addcontentsline{equ}{myequations}{\protect\numberline{\theequation}#1}}
\setlength{\cftmyequationsnumwidth}{3em}
\makeatother
\begin{document}
%\tableofcontents
\listofmyequations
\section{Section title}
\begin{equation}
F=q[E+(v\times B)]
\label{eq:Force}
\end{equation}
\begin{equation}
\tau=F\times r
\label{eq:Torque}
\end{equation}
If the electrical force in \ref{eq:Force} is ignored,
and the remaining magnetic force is used in \ref{eq:Torque},
with the assumption that $v$ is perpendicular to $B$, we find that
\begin{equation}
\tau=qvBrsin\theta
\label{eq:Magnetic}
\end{equation}
\begin{align}
\min_{u_{i}(t),y_i, i=1...N}\!\!\!\!\!\! J(u_i(t),y_i) &:= \sum_{i=1}^N \int_0^{T} R_i(u_{i}(t),t) dt \label{eq:objective function}\\
+& \xi \int_{0}^{T} \left(\theta\frac{M - I(t)}{M}K(t) - D(t)\right)^2 dt + \sum_{i=1}^N \gamma_i y_i \notag\\
+ & \sum_{i=1}^N p_{i} \int_{T_i}^{T} u_i(t-T_i)dt \notag\\
+& h\int_{0}^T \left[\theta\frac{M - I(t)}{M}K(t) - D(t)\right]^+ dt, \notag
\end{align}
subject to
\begin{align}
K(t)& = \sum_{i=1}^N u_i(t-T_i), & \quad t\in [0,T] \label{eq:2} \\
u_i(t) &\le % \theta_i S_i(t) y_i =
\theta_i (M_i - I_i(t)) y_i, & \ \ i = 1\ldots N \quad t\in [0,T-T_i] \label{eq:ui}\\
u_i(t) & = 0, & i = 1\ldots N \quad t\in [T-T_i,T] \label{eq:uio}\\
\dot{I}_i(t)& = f_i(I_i(t)), & i = 1 \ldots N \quad t\in [0,T]& \label{eq:dotIi}\\
\dot{I}(t)& = f(I(t)), &\quad t\in [0,T] \label{eq:dotI}\\
u_i(t) & \ge 0, & i = 1 \ldots N \quad t\in [0,T]& \label{eq:const5}\\
K(t)& \ge 0, &\quad t\in [0,T]& \\
y_i &\in \{0,1\}, & i = 1 \ldots N& \label{eq:const6}
\end{align}
%where
\begin{equation}\label{eq:capacity constraint}
u^{j}_i(t) \leq Min_{p\in C^{j}_{i}} \sum_{k \in {K^{j}_{ip}}} u^{j+1}_k(t-T_k)
\end{equation}
\end{document}
Antwort1
Ich halte es nicht für eine gute Idee, das \label
Makro manuell zu ändern, da es von vielen anderen Paketen, einschließlich den hyperref
und cleveref
-Paketen, verwendet und neu definiert wird. Ich würde \myequations
die Anweisungen einfach direkt auf die Gleichungen anwenden, die in der Liste der Gleichungen aufgeführt werden sollen. (Bei Verwendung mit gather
und align
-Umgebungen scheinen die \myequations
Anweisungen ausgegeben worden zu seinnachZeilenumbruchanweisungen. Ich bin nicht sicher, warum.)
Oh undBitte verwenden Sie keine eqnarray
Umgebungen; stattdessen verwenden align
.
\documentclass[english]{article}
\setcounter{secnumdepth}{2}
\usepackage{mathtools} % for \coloneqq and \mathclap macros
\usepackage{tocloft}
\usepackage[unicode=true, pdfusetitle, bookmarks=true,
bookmarksnumbered=false, bookmarksopen=false,
breaklinks=false, backref=false,
colorlinks=true,allcolors=black]
{hyperref}
\usepackage[noabbrev]{cleveref}
\counterwithin{equation}{section}
\newcommand{\listequationsname}{\normalsize List of Equations}
\newlistof{myequations}{equ}{\listequationsname}
\newcommand{\myequations}[1]{%
\addcontentsline{equ}{myequations}%
{\protect\numberline{\theequation}#1}}
\setlength{\cftmyequationsnumwidth}{2.5em}
\begin{document}
%\tableofcontents
\listofmyequations
\allowdisplaybreaks
\section{Section title}
\begin{gather}
F=q[E+(v\times B)]
\label{eq:Force} \\ \myequations{Force}
\tau=F\times r
\label{eq:Torque}
\end{gather} \myequations{Torque}
If the electrical force in \cref{eq:Force} is ignored, and
if the remaining magnetic force is used in \cref{eq:Torque},
with the assumption that $v$ is perpendicular to~$B$, we
find that
\begin{equation}
\tau=qvBr\sin\theta
\label{eq:Magnetic}
\myequations{Magnetic}
\end{equation}
\begin{equation}
\label{eq:objective function}
\myequations{Objective function}
\begin{aligned}[t]
\smash[b]{\min_{\mathclap{%
\substack{u_{i}(t),y_i,\\ i=1,\dots,N}}}}
\,J(u_i(t),y_i)
&\coloneqq \sum_{i=1}^N \int_0^{T} R_i(u_{i}(t),t)\, dt
\\
&\quad+ \xi \int_{0}^{T} \left(\theta\frac{M - I(t)}{M}K(t) - D(t)\right)^{\!2} dt
+ \sum_{i=1}^N \gamma_i y_i \\
&\quad+ \sum_{i=1}^N p_{i} \int_{T_i}^{T} u_i(t-T_i)\,dt\\
&\quad+ h\int_{0}^T \left[\theta\frac{M - I(t)}{M}K(t) - D(t)\right]^+ dt,
\end{aligned}
\end{equation}
subject to
\begin{align}
K(t) &= \sum\nolimits_{i=1}^N u_i(t-T_i),
&& t\in [0,T]
\label{eq:2} \\
u_i(t) &\le % \theta_i S_i(t) y_i =
\theta_i (M_i - I_i(t)) y_i,
&& i = 1,\ldots, N,
\quad t\in [0,T-T_i]
\label{eq:ui} \\ \myequations{ui}
u_i(t) &= 0,
&& i = 1,\ldots, N,
\quad t\in [T-T_i,T]
\label{eq:uio} \\ \myequations{uio}
\dot{I}_i(t) &= f_i(I_i(t)),
&& i = 1,\ldots,N,
\quad t\in [0,T]
\label{eq:dotIi} \\ \myequations{dotIi}
\dot{I}(t) &= f(I(t)),
&& t\in [0,T]
\label{eq:dotI}\\ \myequations{dotI}
u_i(t) &\ge 0,
&& i = 1,\ldots,N,
\quad t\in [0,T]
\label{eq:const5} \\ \myequations{const5}
K(t) &\ge 0,
&& t\in [0,T] \\
y_i &\in \{0,1\},
&& i = 1,\ldots,N
\label{eq:const6}
\end{align} \myequations{const6}
where
\begin{equation}
\label{eq:capacity constraint}
\myequations{Capacity constraint}
u^{j}_i(t) \leq \min_{p\in C^{j}_{i}} \sum_{k \in {K^{j}_{ip}}} u^{j+1}_k(t-T_k)
\end{equation}
\end{document}
Antwort2
Wie Mico kommentierte, sollten Sie nicht neu definieren \label
. Wenn Sie die Angabe eines Labels vermeiden möchten, können Sie einen einfachen Befehl erstellen, der beides tut. Ich habe \ref
hier verwendet, um die richtige Nummer innerhalb von ams-Ausrichtungen abzurufen.
\documentclass[english]{article}
\setcounter{secnumdepth}{2}
\usepackage{mathtools} % for \coloneqq and \mathclap macros
\usepackage{tocloft}
\usepackage[unicode=true, pdfusetitle, bookmarks=true,
bookmarksnumbered=false, bookmarksopen=false,
breaklinks=false, backref=false,
colorlinks=true,allcolors=black]
{hyperref}
\usepackage[noabbrev]{cleveref}
\counterwithin{equation}{section}
\newcommand{\listequationsname}{\normalsize List of Equations}
\newlistof{myequations}{equ}{\listequationsname}
\newcommand{\myequations}[1]{%
\addcontentsline{equ}{myequations}%
{\protect\numberline{\ref{eq:#1}}#1}}
\setlength{\cftmyequationsnumwidth}{2.5em}
\newcommand\myeq[1]{\label{eq:#1}\myequations{#1}}
\begin{document}
%\tableofcontents
\listofmyequations
\allowdisplaybreaks
\section{Section title}
\begin{gather}
F=q[E+(v\times B)]
\myeq{Force} \\
\tau=F\times r
\myeq{Torque}
\end{gather}
If the electrical force in \cref{eq:Force} is ignored, and
if the remaining magnetic force is used in \cref{eq:Torque},
with the assumption that $v$ is perpendicular to~$B$, we
find that
\begin{equation}
\tau=qvBr\sin\theta
\myeq{Magnetic}
\end{equation}
\begin{equation}
\myeq{objective function}
\begin{aligned}[t]
\smash[b]{\min_{\mathclap{%
\substack{u_{i}(t),y_i,\\ i=1,\dots,N}}}}
\,J(u_i(t),y_i)
&\coloneqq \sum_{i=1}^N \int_0^{T} R_i(u_{i}(t),t)\, dt
\\
&\quad+ \xi \int_{0}^{T} \left(\theta\frac{M - I(t)}{M}K(t) - D(t)\right)^{\!2} dt
+ \sum_{i=1}^N \gamma_i y_i \\
&\quad+ \sum_{i=1}^N p_{i} \int_{T_i}^{T} u_i(t-T_i)\,dt\\
&\quad+ h\int_{0}^T \left[\theta\frac{M - I(t)}{M}K(t) - D(t)\right]^+ dt,
\end{aligned}
\end{equation}
subject to
\begin{align}
K(t) &= \sum\nolimits_{i=1}^N u_i(t-T_i),
&& t\in [0,T]
\label{eq:2} \\
u_i(t) &\le % \theta_i S_i(t) y_i =
\theta_i (M_i - I_i(t)) y_i,
&& i = 1,\ldots, N,
\quad t\in [0,T-T_i]
\myeq{ui} \\
u_i(t) &= 0,
&& i = 1,\ldots, N,
\quad t\in [T-T_i,T]
\myeq{uio} \\
\dot{I}_i(t) &= f_i(I_i(t)),
&& i = 1,\ldots,N,
\quad t\in [0,T]
\myeq{dotIi} \\
\dot{I}(t) &= f(I(t)),
&& t\in [0,T]
\myeq{dotI}\\
u_i(t) &\ge 0,
&& i = 1,\ldots,N,
\quad t\in [0,T]
\myeq{const5} \\
K(t) &\ge 0,
&& t\in [0,T] \\
y_i &\in \{0,1\},
&& i = 1,\ldots,N
\myeq{const6}
\end{align}
where
\begin{equation}
\myeq{capacity constraint}
u^{j}_i(t) \leq \min_{p\in C^{j}_{i}} \sum_{k \in {K^{j}_{ip}}} u^{j+1}_k(t-T_k)
\end{equation}
\end{document}