Latex/MikTex Mehrere Abbildungen in ein zweispaltiges Artikeldokument einfügen

Latex/MikTex Mehrere Abbildungen in ein zweispaltiges Artikeldokument einfügen

Ich verwende Latex, um die erste Abbildung oben in der Mitte der Seite einzufügen, sodass sie sich über zwei Spalten erstreckt. Direkt nach dieser Abbildung möchte ich zwei weitere Abbildungen mit einigen Absätzen und Gleichungen auf derselben Seite in einer zweispaltigen Umgebung hinzufügen:

\documentclass[10pt,a4paper,twoside,twocolumn]{article}
\usepackage[utf8]{inputenc}
\usepackage[left=0.53in,right=0.83in,top=0.3in,bottom=1.7in]{geometry}
%\usepackage[hmarginratio=1:1]{geometry}
\usepackage{fancyhdr}
%\usepackage{multicol}
\usepackage{times}
\usepackage{lettrine}
\usepackage{graphicx}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{etoolbox}% http://ctan.org/pkg/etoolbox
\usepackage{sectsty}
%\usepackage{float}
%\usepackage[hang]{footmisc}
%
\pagestyle{fancy}
\renewcommand\thesection{\Roman{section}.}
%\renewcommand\thesubsection{\thesection.\arabic{subsection}}
\setlength{\columnsep}{0.43cm}
\setlength{\parindent}{0.16in}
%\setlength\footnotemargin{10pt} %
%\footnotesep is the space between footnotes:
%\setlength{\footnotesep}{0.5cm}
%\footins is the space between the text body and the footnotes:
\setlength{\skip\footins}{0.70cm}
\renewcommand*\footnoterule{}
%\pagestyle{myheadings}
%\pdfpagewidth 8.5in
%\pdfpageheight 11in
\headheight 55pt
%\footerheight 55pt
%\rhead{\scriptsize{\thepage}}
%\chead{Middle top}
%\lhead{\scriptsize{IEEE SIGNAL PROCESSING LETTERS, VOL. 11, NO. 7, JULY 2004}}
\fancyhead[LE,RO]{\scriptsize{\thepage}}
\fancyhead[LO,RE]{\scriptsize{IEEE SIGNAL PROCESSING LETTERS, VOL. 11, NO. 7, JULY 2004}}
\cfoot{}
%\rfoot{Right bottom}
%\cfoot{\thepage}
%\lfoot{Left bottom}
\renewcommand{\headrulewidth}{0pt}
%Control the footnote indent
%\makeatletter
%\renewcommand\@makefntext[1]{%
 % \noindent\makebox[0.1em][r]{\@makefnmark}#1}
%\makeatother
%
%{\normalfont\fontfamily{phv}\fontsize{16}{19}\bfseries}{\thesection}{1em}{}
%\titleformat{\section}
 % {\normalfont\fontfamily{ptmr}\fontsize{16}{19}}{\thesection}{1em}{}
%\titleformat{\subsection}
 % {\normalfont\fontfamily{ptmr}\fontsize{14}{17}}{\thesubsection}{1em}{}
%\titleformat{\subsubsection}
 % {\normalfont\fontfamily{ptmr}\fontsize{14}{17}}{\thesubsubsection}{1em}{}
%
\makeatletter
%\patchcmd{\@makechapterhead}{\bfseries}{\relax}{}{}% Non-bold \chapter name
%\patchcmd{\@makechapterhead}{\bfseries}{\relax}{}{}% Non-bold \chapter title
\patchcmd{\section}{\bfseries}{\relax}{}{}% Non-bold \section
\patchcmd{\subsection}{\bfseries}{\relax}{}{}% Non-bold \subsection
\makeatother
%
\allsectionsfont{\centering}
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{figure*}
\centering
\includegraphics[width=3.0in]{Image1}
\caption{\scriptsize{Fig. 1. (a) Intensity profile extracted from a real image. (b) The estimated 1st derivative information. (c) The estimated contrast information with$ \sigma = 2:0.$}}
\label{Fig1}
 \end{figure*}
%
\begin{figure}
 \begin{centering}
  \includegraphics[width=0.75\columnwidth]{Image3}
  \caption{\scriptsize{Fig. 2. Definition of contrast.}}
  \label{Fig2}
 \end{centering}
\end{figure}
By convoluting a profile  $ I(x) $ with this operator, we have
\begin{equation}
\label{eq:3}
\varphi (x)=I(x)\otimes B(x)= I(x) - I(x)\otimes N(x;0,\sigma).
\end{equation}
Basically,$\varphi (x)$ can be imagined as the 2nd derivative of the profile I(x).    Moreover, the local extremes of $ \varphi (x)$ correspond to the high-curvature points of $I(x)$. Fig. 1(c) shows the contrast information extracted from Fig. 1(a) using (3) with$\sigma = 2.0$ , which is determined empirically. It is obvious that Fig. 1(c) offers much more reliable information than Fig. 1(b).\\
Since the 2nd derivative is orientation-dependent, the contrast information at an image pixel has to be measured along various orientations. In the proposed algorithm, we detect boundaries by checking the relations between each pixel and its eight neighbors. Hence, four directional operators are used at each pixel to measure the curvature information at that pixel. These four directions are 0 , 45 , 90 and 135 , respectively. All these four directional contrast data are then grouped together in subsequent processes.
\section{\small{COLOR CONTRAST IN THE CIE LAB COLOR SPACE}}
In color image segmentation, a proper choice of color space is also a crucial issue. In the selection of color space, we choose the CIE $ L^*a^*b^* $ color space to work on due to its three major properties: $1)$ separation of achromatic information from chromatic information, $ 2)$ uniform color space, and $ 3) $ similar to human visual perception $[12]$. Here,$ L^*$  represents the luminance component, while $ a^* $ and $ b^* $ represent color components. The formulae for converting an RGB image into the coordinates can be found in many color-related articles, like $[12]$ and $[13]$.\\
\begin{figure}
  \centering
  \includegraphics[width=2.0in]{Image2}
  \caption {\scriptsize{Fig. 3. Example of the test pattern in the subjective experiment.}}
  \label{Fig3}
\end{figure}
In the CIE color space, the Euclidean distance between and , defined as $(4)$ is approximately equivalent to the perceptual difference between these two colors $[4]$, $[12]$. By incorporating this color difference formula into our contrast definition, we define the color contrast across an edge as$(5)$ To further explore the correlation between color contrast and the luminance level or color level, we made a subjective experiment. In our experiment, $10$ observers are involved and the patterns are displayed over a calibrated ViewSonic PT775 monitor for comparisons. Here, the values of luminance/color contrast are coarsely quantized into eleven steps, 0, 5, 10, 15, …, 50. In
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}

Die gewünschte Ausgabe sieht wie dieses Bild aus: Die gewünschte PDF-Ausgabe von MikTex

Ich bin für jede Hilfe und jeden Hinweis dankbar, der mir dabei hilft, diese Arbeit zu erledigen. Ich habe viel Zeit darauf verwendet, aber keinen Erfolg gehabt. Ich bin ein Neuling in Sachen Latex. Freundliche Grüße.

Antwort1

Wenn ich direkt vor dem von Ihnen bereitgestellten Code \lipsum[1-10](mit) hinzufüge \usepackage{lipsum}und den Abbildungscode korrigiere, erhalte ich genau das, was Sie anscheinend möchten.

Ich habe lediglich timesin geändert mathptmx(ersteres ist veraltet).

\documentclass[10pt,a4paper,twoside,twocolumn]{article}
\usepackage[utf8]{inputenc}
\usepackage[left=0.53in,right=0.83in,top=0.3in,bottom=1.7in]{geometry}
%\usepackage[hmarginratio=1:1]{geometry}
\usepackage{fancyhdr}
%\usepackage{multicol}
\usepackage{mathptmx}
\usepackage{lettrine}
\usepackage{graphicx}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{etoolbox}% http://ctan.org/pkg/etoolbox
\usepackage{sectsty}
\usepackage{lipsum}
%\usepackage{float}
%\usepackage[hang]{footmisc}
%
\pagestyle{fancy}
\renewcommand\thesection{\Roman{section}.}
%\renewcommand\thesubsection{\thesection.\arabic{subsection}}
\setlength{\columnsep}{0.43cm}
\setlength{\parindent}{0.16in}
%\setlength\footnotemargin{10pt} %
%\footnotesep is the space between footnotes:
%\setlength{\footnotesep}{0.5cm}
%\footins is the space between the text body and the footnotes:
\setlength{\skip\footins}{0.70cm}
\renewcommand*\footnoterule{}
%\pagestyle{myheadings}
%\pdfpagewidth 8.5in
%\pdfpageheight 11in
\headheight 55pt
%\footerheight 55pt
%\rhead{\scriptsize{\thepage}}
%\chead{Middle top}
%\lhead{\scriptsize{IEEE SIGNAL PROCESSING LETTERS, VOL. 11, NO. 7, JULY 2004}}
\fancyhead[LE,RO]{\scriptsize{\thepage}}
\fancyhead[LO,RE]{\scriptsize{IEEE SIGNAL PROCESSING LETTERS, VOL. 11, NO. 7, JULY 2004}}
\cfoot{}
%\rfoot{Right bottom}
%\cfoot{\thepage}
%\lfoot{Left bottom}
\renewcommand{\headrulewidth}{0pt}
%Control the footnote indent
%\makeatletter
%\renewcommand\@makefntext[1]{%
 % \noindent\makebox[0.1em][r]{\@makefnmark}#1}
%\makeatother
%
%{\normalfont\fontfamily{phv}\fontsize{16}{19}\bfseries}{\thesection}{1em}{}
%\titleformat{\section}
 % {\normalfont\fontfamily{ptmr}\fontsize{16}{19}}{\thesection}{1em}{}
%\titleformat{\subsection}
 % {\normalfont\fontfamily{ptmr}\fontsize{14}{17}}{\thesubsection}{1em}{}
%\titleformat{\subsubsection}
 % {\normalfont\fontfamily{ptmr}\fontsize{14}{17}}{\thesubsubsection}{1em}{}
%
\makeatletter
%\patchcmd{\@makechapterhead}{\bfseries}{\relax}{}{}% Non-bold \chapter name
%\patchcmd{\@makechapterhead}{\bfseries}{\relax}{}{}% Non-bold \chapter title
\patchcmd{\section}{\bfseries}{\relax}{}{}% Non-bold \section
\patchcmd{\subsection}{\bfseries}{\relax}{}{}% Non-bold \subsection
\makeatother
%
\allsectionsfont{\centering}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Alter some LaTeX defaults for better treatment of figures:
    % See p.105 of "TeX Unbound" for suggested values.
    % See pp. 199-200 of Lamport's "LaTeX" book for details.
    %   General parameters, for ALL pages:
    \renewcommand{\topfraction}{0.9}    % max fraction of floats at top
    \renewcommand{\bottomfraction}{0.8} % max fraction of floats at bottom
    %   Parameters for TEXT pages (not float pages):
    \setcounter{topnumber}{2}
    \setcounter{bottomnumber}{2}
    \setcounter{totalnumber}{4}     % 2 may work better
    \setcounter{dbltopnumber}{2}    % for 2-column pages
    \renewcommand{\dbltopfraction}{0.9} % fit big float above 2-col. text
    \renewcommand{\textfraction}{0.07}  % allow minimal text w. figs
    %   Parameters for FLOAT pages (not text pages):
    \renewcommand{\floatpagefraction}{0.7}  % require fuller float pages
    % N.B.: floatpagefraction MUST be less than topfraction !!
    \renewcommand{\dblfloatpagefraction}{0.7}   % require fuller float pages

    % remember to use [htp] or [htpb] for placement
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\lipsum[1-10]

%%%%%%%% ORIGINAL CODE (fixed)
\begin{figure*}
\centering
\includegraphics[width=3.0in]{Image1}
\caption{(a) Intensity profile extracted from a real image. (b) The estimated 1st 
derivative information. (c) The estimated contrast information with $\sigma = 2:0.$}
\label{Fig1}
\end{figure*}

\begin{figure}[t]
\centering
  \includegraphics[width=0.75\columnwidth]{Image3}
  \caption{Definition of contrast.}
  \label{Fig2}
\end{figure}

By convoluting a profile  $ I(x) $ with this operator, we have
\begin{equation}
\label{eq:3}
\varphi (x)=I(x)\otimes B(x)= I(x) - I(x)\otimes N(x;0,\sigma).
\end{equation}
Basically, $\varphi (x)$ can be imagined as the 2nd derivative of the profile I(x). 
Moreover, the local extremes of $ \varphi (x)$ correspond to the high-curvature points of 
$I(x)$. Fig. 1(c) shows the contrast information extracted from Fig. 1(a) using (3) 
with$\sigma = 2.0$ , which is determined empirically. It is obvious that Fig. 1(c) offers 
much more reliable information than Fig. 1(b).\\ Since the 2nd derivative is 
orientation-dependent, the contrast information at an image pixel has to be measured along 
various orientations. In the proposed algorithm, we detect boundaries by checking the 
relations between each pixel and its eight neighbors. Hence, four directional operators are 
used at each pixel to measure the curvature information at that pixel. These four 
directions are 0 , 45 , 90 and 135 , respectively. All these four directional contrast data 
are then grouped together in subsequent processes. \section{\small{COLOR CONTRAST IN THE 
CIE LAB COLOR SPACE}} In color image segmentation, a proper choice of color space is also a 
crucial issue. In the selection of color space, we choose the CIE $ L^*a^*b^* $ color space 
to work on due to its three major properties: $1)$ separation of achromatic information 
from chromatic information, $ 2)$ uniform color space, and $ 3) $ similar to human visual 
perception $[12]$. Here,$ L^*$ represents the luminance component, while $ a^* $ and $ b^* 
$ represent color components. The formulae for converting an RGB image into the coordinates 
can be found in many color-related articles, like $[12]$ and $[13]$.\\

\begin{figure}
\centering
\includegraphics[width=2.0in]{Image2}
\caption{Example of the test pattern in the subjective experiment.}
\label{Fig3}
\end{figure}

In the CIE color space, the Euclidean distance between and , defined as $(4)$ is 
approximately equivalent to the perceptual difference between these two colors $[4]$, 
$[12]$. By incorporating this color difference formula into our contrast definition, we 
define the color contrast across an edge as$(5)$ To further explore the correlation between 
color contrast and the luminance level or color level, we made a subjective experiment. In 
our experiment, $10$ observers are involved and the patterns are displayed over a 
calibrated ViewSonic PT775 monitor for comparisons. Here, the values of luminance/color 
contrast are coarsely quantized into eleven steps, 0, 5, 10, 15, …, 50. In

\end{document} 

Beachten Sie, dass Sie figureanstelle von hatten figure*; es ist irrelevant, welche Optionen Sie angeben, da figure*nur oben angezeigt wird.

Ich habe vor und nach jeder der Abbildungsumgebungen eine Leerzeile gelassen. Was Sie tun sollten, wenn das Dokument in seiner endgültigen Form vorliegt, was den Text betrifft, ist

  • Platzieren Sie den Code für figure*irgendwo zwischen zwei Absätzen auf der Seite, die der gewünschten Stelle vorangehen

  • Verschieben Sie die beiden Umgebungen im Dokument nach oben oder unten, figurebis sie dort sind, wo Sie sie haben möchten.

Der zweite Punkt sollte nicht zu viel Arbeit erfordern.

Bildbeschreibung hier eingeben

verwandte Informationen