Campo de dirección para dy/dx=-x/y

Campo de dirección para dy/dx=-x/y
\documentclass{beamer}
\usepackage{tikz,pgfplots}
\begin{document}
\begin{frame}
\def\length{sqrt(1+(-x/y)^2)}
\begin{tikzpicture}
\begin{axis}[
domain=-3:3, 
view={0}{90},
title={$\displaystyle\frac{dy}{dx}=-\frac{x}{y}$},
xmin=-3,
xmax=3,
ymin=-3,
ymax=3,
ytick={-3,-2,-1,0,1,2,3}
]
\addplot3[gray, quiver={u={1/(\length)}, v={(-x/y)/(\length)}, scale arrows=0.15}, -,samples=40] {0};
\addplot +[blue, samples=31, smooth, thick, no markers, domain=-sqrt(2):sqrt(2)]{sqrt(2-x^2)};
\addplot +[red, samples=31, smooth, thick, no markers, domain=-2:2]{sqrt(4-x^2)};
\addplot +[orange, samples=31, smooth, thick, no markers, domain=-sqrt(6):sqrt(6)]{sqrt(6-x^2)};
\addplot +[blue, samples=31, smooth, thick, no markers, domain=-sqrt(2):sqrt(2)]{-sqrt(2-x^2)};
\addplot +[red, samples=31, smooth, thick, no markers, domain=-2:2]{-sqrt(4-x^2)};
\addplot +[orange, samples=31, smooth, thick, no markers, domain=-sqrt(6):sqrt(6)]{-sqrt(6-x^2)};
\end{axis}
\end{tikzpicture}
\end{frame}
\end{document}

Este es el campo de dirección para $\frac{dy}{dx}=-\frac{x}{y}$. Tengo dos problemas.

  1. ¿Cómo consigo que el programa dibuje los vectores en el eje x negativo?
  2. ¿Cómo dibujo círculos de un radio particular en el gráfico (¡el método que se me ocurrió claramente no funciona!)?

Gracias por cualquier ayuda.

Editar: agregué la clase de documento como proyector, pero funciona igual con el artículo.

Respuesta1

ingrese la descripción de la imagen aquí

\documentclass{beamer}
\usepackage{pgfplots}
\usetikzlibrary{arrows.meta}
\begin{document}
\begin{frame}
\def\length{sqrt(1+(-x/y)^2)}
\begin{tikzpicture}
\begin{axis}[
domain=-3:3, 
view={0}{90},
title={$\displaystyle\frac{dy}{dx}=-\frac{x}{y}$},
xmin=-3,
xmax=3,
ymin=-3,
ymax=3,
ytick={-3,-2,-1,0,1,2,3}
]
\addplot3[gray, quiver={u={1/(\length)}, v={(-x/y)/(\length)}, scale arrows=0.1}, -{Stealth[width=2pt,length=2pt]},samples=24,domain=-3:3] {0};
\addplot[blue, samples=50, thick, no markers, domain=0:2*pi] ({cos(deg(x))},{sin(deg(x))});
\addplot[red, samples=50, thick, no markers, domain=0:2*pi] ({2*cos(deg(x))},{2*sin(deg(x))});
\addplot[orange, samples=50, thick, no markers, domain=0:2*pi] ({3*cos(deg(x))},{3*sin(deg(x))});
\end{axis}
\end{tikzpicture}
\end{frame}
\end{document}

No estoy seguro de si esto es suficiente para ti. Los círculos se dibujan como gráficos paramétricos, es decir, algo de la forma\addplot ({r*cos(x)}, {r*sin(x)});

La brecha entre las flechas para x < 0 se debe al hecho de que la coordenada (x,y) se refiere al inicio de la flecha hasta donde puedo ver, y como las flechas apuntan en direcciones opuestas (ver imagen arriba), obtienes un espacio allí y se superponen para x > 0. Reducir un poco la escala de las flechas soluciona el problema de superposición. Para la imagen de arriba, el número de muestras se reduce a 24; si realmente necesita 40 muestras, entonces necesita escalar más las flechas, por ejemplo

\addplot3[gray, quiver={u={1/(\length)}, v={(-x/y)/(\length)}, scale arrows=0.07}, -{Stealth[width=1pt,length=1pt]},samples=40,domain=-3:3] {0};

Una forma de obtener flechas verticales en el eje x es agregar carcaj separados con u=0,v=±1. Quizás la escala de la flecha podría ser diferente.

\documentclass{beamer}
\usepackage{pgfplots}
\usetikzlibrary{arrows.meta}
\begin{document}
\begin{frame}
\def\length{sqrt(1+(-x/y)^2)}
\begin{tikzpicture}
\begin{axis}[
domain=-3:3, 
view={0}{90},
title={$\displaystyle\frac{dy}{dx}=-\frac{x}{y}$},
xmin=-3,
xmax=3,
ymin=-3,
ymax=3,
ytick={-3,-2,-1,0,1,2,3}
]
\addplot3[gray, quiver={u={1/(\length)}, v={(-x/y)/(\length)}, scale arrows=0.07}, -{Stealth[width=1pt,length=1pt]},samples=20,domain=-3:3] {0};

\addplot3[gray, quiver={u={0}, v={1}, scale arrows=0.05}, -{Stealth[width=1pt,length=1pt]},samples=10,samples y=1,domain=-3:-0.17,y domain=0] {0};
\addplot3[gray, quiver={u={0}, v={-1}, scale arrows=0.05}, -{Stealth[width=1pt,length=1pt]},samples=10,samples y=1,domain=-3:-0.17,y domain=0] {0};

\addplot[blue, samples=50, thick, no markers, domain=0:2*pi] ({cos(deg(x))},{sin(deg(x))});
\addplot[red, samples=50, thick, no markers, domain=0:2*pi] ({2*cos(deg(x))},{2*sin(deg(x))});
\addplot[orange, samples=50, thick, no markers, domain=0:2*pi] ({3*cos(deg(x))},{3*sin(deg(x))});
\end{axis}
\end{tikzpicture}
\end{frame}
\end{document}

ingrese la descripción de la imagen aquí

Respuesta2

Esta es una solución que también aborda el problema del espaciado inconsistente entre flechas debido al hecho de que el quivercomando pgfplotscoloca la cola de una flecha, en lugar del centro, en cada punto de una cuadrícula equidistante.

Para resolver el problema, primero se puede trazar una flecha de la manera habitual y luego trazar una segunda flecha que apunte en una dirección exactamente opuesta a la de la primera, pero sin punta de flecha; es decir, la segunda "flecha" es esencialmente sólo una línea. Juntos, estos dos objetos constituyen una flecha que apunta en la dirección de la primera flecha. Esto crea la ilusión de que la flecha está colocada en el centro de un punto.

Por ejemplo:

ingrese la descripción de la imagen aquí

\begin{tikzpicture}[
    declare function = {f(\x) = -\x/\y;} % Define which function we're using
    ]
    \begin{axis}[
        zmax = 1,
        zmin = 0,
        xtick = {-1,-0.5,...,1},
        axis equal image = true, % Unit vectors for both axes have the same length
        view = {0}{90}
        ]
        \addplot3[% Arrows' first-half
            blue,
            -stealth,
            domain  = -1:1,
            samples = 20,
            quiver  = {
                u=1/(2*sqrt(1^2 + f(x)^2)),
                v=f(x)/(2*sqrt(1^2 + f(x)^2)),
                scale arrows=0.075,
                },
        ] (x,y,0);
        \addplot3[% Arrow's second-half
            blue,
            domain  = -1:1,
            samples = 20,
            quiver  = {
                u=-1/(2*sqrt(1^2 + f(x)^2)),
                v=-f(x)/(2*sqrt(1^2 + f(x)^2)),
                scale arrows=0.075,
                },
        ] (x,y,0);
        \addplot [domain=-180:180, samples=100, color=red, thick] ({0.75*cos(x)},{0.75*sin(x)});
    \end{axis}
\end{tikzpicture}

La solución se inspiró en un código Matlab de Tobias von Petersdorff de la Universidad de Maryland. Aquí estáel enlace.

información relacionada