
Tengo el siguiente código :
\usepackage{amsmath, amsthm}
\begin{document}
\begin{align}
\begin{split}
Case 1:\\
\text{5 is a square modulo q and 29 is not a square modulo q from which we obtain} \label{529spilt}\\
q \equiv \pm 1 \pmod{5} \,\, \text{and} \,\, q \equiv 2,3,8,10,11,12,14,15,17,18,19,21,26,27 \pmod{29}\\
Case 2:\\
\text{5 is not a square modulo q and 29 is a square modulo q from which we obtain} \\
q \equiv \pm 2 \pmod{5} \,\, \text{and} \,\, q \equiv 1,4,5,6,7,9,13,16,20,22,23,24,25,28 \pmod{29}
\end{split}
\end{align}
\end{document}
Utilicé el entorno de alineación porque quiero numerar estas oraciones, pero resulta bastante complicado. (Consulte la imagen adjunta). ¿Existe una mejor manera de escribirlo?
Respuesta1
No estoy seguro de que realmente quieras etiquetar una gran porción de texto como si fuera una ecuación, pero aquí tienes una versión diferente:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{equation} \label{529spilt}
\begin{minipage}{0.8\displaywidth}
Case 1: $5$ is a square modulo $q$ and $29$ is not a square modulo $q$
from which we obtain \\[.5\abovedisplayskip]
\hspace*{1.5em}$q \equiv \pm 1 \pmod{5}$ and \\
\hspace*{1.5em}$q \equiv 2,3,8,10,11,12,14,15,17,18,19,21,26,27 \pmod{29}$
\vspace{.5\belowdisplayskip}
Case 2: $5$ is not a square modulo $q$ and $29$ is a square modulo $q$
from which we obtain \\[.5\abovedisplayskip]
\hspace*{1.5em}$q \equiv \pm 2 \pmod{5}$ and \\
\hspace*{1.5em}$q \equiv 1,4,5,6,7,9,13,16,20,22,23,24,25,28 \pmod{29}$
\end{minipage}
\end{equation}
\end{document}
Aquí hay una comprensión diferente:
\documentclass{article}
\usepackage{amsmath}
\usepackage{lipsum} % just for the example
\begin{document}
\lipsum[2]
\begin{subequations}\label{529spilt}
\begin{description}
\item[Case 1:] $5$ is a square modulo $q$ and $29$ is not a square modulo $q$
from which we obtain
\begin{align}
q &\equiv \pm 1 \pmod{5} \quad\text{and} \\
q &\equiv 2,3,8,10,11,12,14,15,17,18,19,21,26,27 \pmod{29}
\intertext{%
\item[Case 2:] $5$ is not a square modulo $q$ and $29$ is a square modulo $q$
from which we obtain
}
q &\equiv \pm 2 \pmod{5} \quad\text{and} \\
q &\equiv 1,4,5,6,7,9,13,16,20,22,23,24,25,28 \pmod{29}
\end{align}
\end{description}
\end{subequations}
\lipsum[3]
\end{document}
Respuesta2
Aquí hay una solución basada en flalign
amsmath y \shortintertext
en mathtools
:
\documentclass{article}
\usepackage[showframe]{geometry}
\usepackage{mathtools}
\begin{document}
Text text text text text text text text text text text text text text text text text text text.
\begin{flalign}
\shortintertext{\parbox{\linewidth}{\emph{Case 1:}
\\ $ 5 $ is a square modulo $ q $ and $ 29 $ is not a square modulo $ q $ from which we obtain}}%
\notag%
& & & q \equiv \pm 1 \pmod{5}\enspace \text{and}\enspace q \equiv 2,3, 8,10, 11, 12, 14, 15, 17, 18, 19, 21, 26, 27 \pmod{29}& & \\[-0.3\baselineskip]
\label{foo} \\[-0.7\baselineskip]
\shortintertext{\parbox{\linewidth}{\emph{Case 2:}\\
$ 5 $ is not a square modulo $ q $ and $ 29 $ is a square modulo $ q $ from which we obtain}}%
\notag%
& & & q \equiv \pm 2 \pmod{5}\enspace \text{and}\enspace q \equiv 1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28 \pmod{29}& &
\end{flalign}
\end{document}