La lista de ecuaciones no incluye también las que se encuentran en el entorno \align

La lista de ecuaciones no incluye también las que se encuentran en el entorno \align

Ninguno de los ejemplos existentes que encontré para enumerar ecuaciones incluye las ecuaciones en el entorno \align. ¿Cómo puedo incluir también ambos tipos de ecuaciones en la misma lista de ecuaciones? Aquí hay un MWE:

    \documentclass[english]{article}
\setcounter{secnumdepth}{2}
%\setcounter{tocdepth}{1}
\usepackage{amsmath}
\usepackage{tocloft}
\usepackage{xstring}
\usepackage[unicode=true, pdfusetitle,
 bookmarks=true,bookmarksnumbered=false,bookmarksopen=false,
 breaklinks=false,pdfborder={0 0 0},backref=false,colorlinks=false]
 {hyperref}

\makeatletter
\numberwithin{equation}{section}

% we use this for our refernces as well
\AtBeginDocument{\renewcommand{\ref}[1]{\mbox{\autoref{#1}}}}

% redefinition of \equation for convenience
\let\oldequation = \equation
\let\endoldequation = \endequation
\AtBeginDocument{\let\oldlabel = \label}% \AtBeginDocument because hyperref redefines \label
\newcommand{\mynewlabel}[1]{%
  \StrBehind{#1}{eq:}[\Str]% remove "eq:" from labels
  \myequations{\Str}\oldlabel{#1}}
  \renewenvironment{equation}{%
  \oldequation
  \let\label\mynewlabel
}{\endoldequation}

% redefinition of \eqnarray for convenience
\let\oldeqnarray = \eqnarray
\let\endoldeqnarray = \endeqnarray
%\AtBeginDocument{\let\oldlabel = \label}% \AtBeginDocument because hyperref redefines \label
\newcommand{\mynewlabelarray}[1]{%
  \StrBehind{#1}{eq:}[\Str]% remove "eq:" from labels
  \myequations{\Str}\oldlabel{#1}}
  \renewenvironment{eqnarray}{%
  \oldeqnarray
  \let\label\mynewlabelarray
}{\endoldeqnarray}

\newcommand{\listequationsname}{\normalsize  List of Equations}
\newlistof{myequations}{equ}{\listequationsname}
\newcommand{\myequations}[1]{%
      \addcontentsline{equ}{myequations}{\protect\numberline{\theequation}#1}}
\setlength{\cftmyequationsnumwidth}{3em}

\makeatother

\begin{document}
%\tableofcontents
\listofmyequations

\section{Section title}
\begin{equation}
  F=q[E+(v\times B)]
  \label{eq:Force}
\end{equation}

\begin{equation}
  \tau=F\times r
  \label{eq:Torque}
\end{equation}
If the electrical force in \ref{eq:Force} is ignored,
and the remaining magnetic force is used in \ref{eq:Torque},
with the assumption that $v$ is perpendicular to $B$, we find that
\begin{equation}
      \tau=qvBrsin\theta
  \label{eq:Magnetic}
\end{equation}

\begin{align}
  \min_{u_{i}(t),y_i, i=1...N}\!\!\!\!\!\! J(u_i(t),y_i)  &:=  \sum_{i=1}^N \int_0^{T} R_i(u_{i}(t),t) dt \label{eq:objective function}\\
+&  \xi \int_{0}^{T}  \left(\theta\frac{M - I(t)}{M}K(t)  - D(t)\right)^2 dt +  \sum_{i=1}^N \gamma_i y_i  \notag\\
  + & \sum_{i=1}^N p_{i} \int_{T_i}^{T} u_i(t-T_i)dt \notag\\
 +&  h\int_{0}^T \left[\theta\frac{M - I(t)}{M}K(t) - D(t)\right]^+ dt, \notag
\end{align}

subject to
\begin{align}
  K(t)& = \sum_{i=1}^N u_i(t-T_i), & \quad t\in [0,T] \label{eq:2} \\
  u_i(t) &\le  % \theta_i S_i(t) y_i =
  \theta_i (M_i - I_i(t)) y_i,  & \ \ i = 1\ldots N \quad t\in [0,T-T_i] \label{eq:ui}\\
  u_i(t) & =  0, & i = 1\ldots N \quad t\in [T-T_i,T] \label{eq:uio}\\
  \dot{I}_i(t)& = f_i(I_i(t)), &  i = 1 \ldots N \quad t\in [0,T]& \label{eq:dotIi}\\
  \dot{I}(t)& = f(I(t)), &\quad t\in [0,T] \label{eq:dotI}\\
  u_i(t) & \ge  0, & i = 1 \ldots N \quad t\in [0,T]& \label{eq:const5}\\
  K(t)& \ge  0, &\quad t\in [0,T]& \\
  y_i &\in  \{0,1\},  & i = 1 \ldots N& \label{eq:const6}
\end{align}
%where

\begin{equation}\label{eq:capacity constraint}
    u^{j}_i(t) \leq Min_{p\in C^{j}_{i}} \sum_{k \in {K^{j}_{ip}}} u^{j+1}_k(t-T_k)
\end{equation}

\end{document} 

Respuesta1

No creo que sea una buena idea modificar la \labelmacro manualmente, ya que muchos otros paquetes la utilizan y la redefinen, incluidos los paquetes hyperrefy . cleverefSimplemente aplicaría \myequationsdirectivas directamente a aquellas ecuaciones que se supone que figuran en la Lista de ecuaciones. (Cuando se utiliza con entornos gathery align, parece ser que las \myequationsdirectivas se han emitidodespuésdirectivas de salto de línea. No estoy seguro de por qué.)

Oh ypor favor no uses eqnarrayentornos; utilizar alignen su lugar.

ingrese la descripción de la imagen aquí

\documentclass[english]{article}
\setcounter{secnumdepth}{2}
\usepackage{mathtools} % for \coloneqq and \mathclap macros
\usepackage{tocloft}
\usepackage[unicode=true, pdfusetitle, bookmarks=true, 
    bookmarksnumbered=false, bookmarksopen=false, 
    breaklinks=false, backref=false, 
    colorlinks=true,allcolors=black]
   {hyperref}
\usepackage[noabbrev]{cleveref}

\counterwithin{equation}{section}

\newcommand{\listequationsname}{\normalsize List of Equations}
\newlistof{myequations}{equ}{\listequationsname}
\newcommand{\myequations}[1]{%
      \addcontentsline{equ}{myequations}%
      {\protect\numberline{\theequation}#1}}     
\setlength{\cftmyequationsnumwidth}{2.5em}

\begin{document}
%\tableofcontents
\listofmyequations

\allowdisplaybreaks

\section{Section title}
\begin{gather}
   F=q[E+(v\times B)]
   \label{eq:Force}  \\ \myequations{Force}
   \tau=F\times r
   \label{eq:Torque} 
\end{gather} \myequations{Torque}
If the electrical force in \cref{eq:Force} is ignored, and 
if the remaining magnetic force is used in \cref{eq:Torque}, 
with the assumption that $v$ is perpendicular to~$B$, we 
find that
\begin{equation}
   \tau=qvBr\sin\theta
   \label{eq:Magnetic} 
   \myequations{Magnetic}
\end{equation}

\begin{equation} 
   \label{eq:objective function} 
   \myequations{Objective function}
\begin{aligned}[t] 
\smash[b]{\min_{\mathclap{%
     \substack{u_{i}(t),y_i,\\ i=1,\dots,N}}}}
     \,J(u_i(t),y_i)  
&\coloneqq \sum_{i=1}^N \int_0^{T} R_i(u_{i}(t),t)\, dt 
    \\
&\quad+ \xi \int_{0}^{T} \left(\theta\frac{M - I(t)}{M}K(t) - D(t)\right)^{\!2} dt 
      + \sum_{i=1}^N \gamma_i y_i \\
&\quad+ \sum_{i=1}^N p_{i} \int_{T_i}^{T} u_i(t-T_i)\,dt\\
&\quad+  h\int_{0}^T \left[\theta\frac{M - I(t)}{M}K(t) - D(t)\right]^+ dt,
\end{aligned}
\end{equation}
subject to
\begin{align}
  K(t) &= \sum\nolimits_{i=1}^N u_i(t-T_i), 
    && t\in [0,T] 
       \label{eq:2} \\
  u_i(t) &\le  % \theta_i S_i(t) y_i =
  \theta_i (M_i - I_i(t)) y_i,  
    && i = 1,\ldots, N, 
       \quad t\in [0,T-T_i] 
       \label{eq:ui} \\ \myequations{ui}
  u_i(t) &=  0, 
    && i = 1,\ldots, N, 
       \quad t\in [T-T_i,T] 
       \label{eq:uio} \\ \myequations{uio}
  \dot{I}_i(t) &= f_i(I_i(t)), 
    && i = 1,\ldots,N, 
       \quad t\in [0,T] 
       \label{eq:dotIi} \\ \myequations{dotIi}
  \dot{I}(t) &= f(I(t)), 
    && t\in [0,T] 
       \label{eq:dotI}\\ \myequations{dotI}
  u_i(t) &\ge  0, 
    && i = 1,\ldots,N, 
       \quad t\in [0,T]
       \label{eq:const5} \\ \myequations{const5}
  K(t) &\ge  0, 
    && t\in [0,T] \\
  y_i &\in  \{0,1\},  
    && i = 1,\ldots,N 
      \label{eq:const6}
\end{align} \myequations{const6}
where
\begin{equation}
  \label{eq:capacity constraint}
  \myequations{Capacity constraint}
    u^{j}_i(t) \leq \min_{p\in C^{j}_{i}} \sum_{k \in {K^{j}_{ip}}} u^{j+1}_k(t-T_k)
\end{equation}

\end{document} 

Respuesta2

Como comentó Mico, no debes redefinir \label. Si desea evitar proporcionar una etiqueta, puede crear un comando simple que haga ambas cosas. Solía \ref​​​​aquí para recoger el número correcto dentro de las alineaciones ams.

\documentclass[english]{article}
\setcounter{secnumdepth}{2}
\usepackage{mathtools} % for \coloneqq and \mathclap macros
\usepackage{tocloft}
\usepackage[unicode=true, pdfusetitle, bookmarks=true, 
    bookmarksnumbered=false, bookmarksopen=false, 
    breaklinks=false, backref=false, 
    colorlinks=true,allcolors=black]
   {hyperref}
\usepackage[noabbrev]{cleveref}

\counterwithin{equation}{section}

\newcommand{\listequationsname}{\normalsize List of Equations}
\newlistof{myequations}{equ}{\listequationsname}
\newcommand{\myequations}[1]{%
      \addcontentsline{equ}{myequations}%
      {\protect\numberline{\ref{eq:#1}}#1}}     
\setlength{\cftmyequationsnumwidth}{2.5em}

\newcommand\myeq[1]{\label{eq:#1}\myequations{#1}}

\begin{document}
%\tableofcontents
\listofmyequations

\allowdisplaybreaks

\section{Section title}
\begin{gather}
   F=q[E+(v\times B)]
   \myeq{Force}  \\
   \tau=F\times r
   \myeq{Torque} 
\end{gather}
If the electrical force in \cref{eq:Force} is ignored, and 
if the remaining magnetic force is used in \cref{eq:Torque}, 
with the assumption that $v$ is perpendicular to~$B$, we 
find that
\begin{equation}
   \tau=qvBr\sin\theta
   \myeq{Magnetic} 
\end{equation}

\begin{equation} 
   \myeq{objective function} 
\begin{aligned}[t] 
\smash[b]{\min_{\mathclap{%
     \substack{u_{i}(t),y_i,\\ i=1,\dots,N}}}}
     \,J(u_i(t),y_i)  
&\coloneqq \sum_{i=1}^N \int_0^{T} R_i(u_{i}(t),t)\, dt 
    \\
&\quad+ \xi \int_{0}^{T} \left(\theta\frac{M - I(t)}{M}K(t) - D(t)\right)^{\!2} dt 
      + \sum_{i=1}^N \gamma_i y_i \\
&\quad+ \sum_{i=1}^N p_{i} \int_{T_i}^{T} u_i(t-T_i)\,dt\\
&\quad+  h\int_{0}^T \left[\theta\frac{M - I(t)}{M}K(t) - D(t)\right]^+ dt,
\end{aligned}
\end{equation}
subject to
\begin{align}
  K(t) &= \sum\nolimits_{i=1}^N u_i(t-T_i), 
    && t\in [0,T] 
       \label{eq:2} \\
  u_i(t) &\le  % \theta_i S_i(t) y_i =
  \theta_i (M_i - I_i(t)) y_i,  
    && i = 1,\ldots, N, 
       \quad t\in [0,T-T_i] 
       \myeq{ui} \\
  u_i(t) &=  0, 
    && i = 1,\ldots, N, 
       \quad t\in [T-T_i,T] 
       \myeq{uio} \\
  \dot{I}_i(t) &= f_i(I_i(t)), 
    && i = 1,\ldots,N, 
       \quad t\in [0,T] 
       \myeq{dotIi} \\
  \dot{I}(t) &= f(I(t)), 
    && t\in [0,T] 
       \myeq{dotI}\\
  u_i(t) &\ge  0, 
    && i = 1,\ldots,N, 
       \quad t\in [0,T]
       \myeq{const5} \\
  K(t) &\ge  0, 
    && t\in [0,T] \\
  y_i &\in  \{0,1\},  
    && i = 1,\ldots,N 
      \myeq{const6}
\end{align}
where
\begin{equation}
  \myeq{capacity constraint}
    u^{j}_i(t) \leq \min_{p\in C^{j}_{i}} \sum_{k \in {K^{j}_{ip}}} u^{j+1}_k(t-T_k)
\end{equation}

\end{document} 

ingrese la descripción de la imagen aquí

información relacionada