%EC%9D%80%20%EB%AC%B4%EC%97%87%EC%9E%85%EB%8B%88%EA%B9%8C%3F%20%EC%9D%BC%EB%B6%80%20%EC%B0%B8%EC%A1%B0%EA%B0%80%20%EB%82%98%ED%83%80%EB%82%98%EC%A7%80%20%EC%95%8A%EB%8A%94%20%EC%9D%B4%EC%9C%A0%EB%8A%94%20%EB%AC%B4%EC%97%87%EC%9E%85%EB%8B%88%EA%B9%8C%3F%20%EB%8B%A4%EB%A5%B8%20%EC%B0%B8%EC%A1%B0%EB%8A%94%20%EC%9E%98%20%EC%9E%91%EB%8F%99%ED%95%A9%EB%8B%88%EA%B9%8C%3F.png)
답변1
귀하의 질문은 그다지 명확하지 않지만 여기에 첫 번째 기호에 정렬된 방정식 시스템이 있습니다 =
.
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{equation*}
\left\{ \begin{aligned}
\frac{\partial L}{\partial W_N}&=0 \rightarrow W_N=\sum_{k=1}^{L'}\alpha_k^{''}y_k^{}\varphi_2^{}(x_k^{}N)\\
\frac{\partial L}{\partial W_b}&=0 \rightarrow W_N=\sum_{k=1}^{L'}\alpha_k^{''}y_k^{}=0\\
\frac{\partial L}{\partial W_{e_k}}&=0 \rightarrow \gamma e_k^{}k=1,2,\dots,L'\\
\frac{\partial L}{\partial W_{\alpha_k^{''}}}&=0 \rightarrow k\biggl[\binom{W_M}{W_N}^T\binom{\varphi_1^{}{x_{KM}^{}}}{\varphi_2^{}{x_{KN}^{}}}+b\biggr]-1+e_k^{}=0\\
\end{aligned} \right.
\end{equation*}
\end{document}