
현재 다른 테이블, 이미지 및 일부 텍스트를 포함하여 다음 테이블이 있습니다.
\documentclass[12pt]{article}
\usepackage[a4paper, top = 0.8cm, left = 1cm, right = 1cm, bottom = 0.8cm]{geometry}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{tikz}
\usepackage{verbatimbox}
\newcommand{\specialcell}[2][c]{%
\begin{tabular}[#1]{@{}l@{}}#2\end{tabular}}
\newcommand{\specialcelltwo}[2][c]{%
\begin{tabular}[#1]{@{}c@{}}#2\end{tabular}}
\begin{document}
\centering\underline{\bfseries{Vergleichsspannungen}}
\addvbuffer[0.3cm 0.2cm]
{\begin{tabular}{ccc}
\begin{tabular}{|c|c|c|}
\hline
Hypothese & Allgemeine Richtung & Hauptspannungsrichtung\\\hline
NH & $\frac{1}{2}(\left|\sigma_x\right| + \sqrt{\sigma_x^2 + 4 \tau_{xy}^2})$ & $\left|\sigma_1\right|$\\\hline
SH & $\sqrt{\sigma_x^2 + 4 \tau_{xy}^2}$ & $\left|\sigma_1\right|$\\\hline
GEH & $\sqrt{\sigma_x^2 + 3\tau_{xy}^2}$ & $\left|\sigma_1\right|$ \\\hline
\end{tabular}&
%some image \raisebox{-.5\height}{\includegraphics[scale=0.23]{einachsig.png}}
&
\specialcelltwo{Einachsiger ebener\\ Spannungszustand\\(Spröde)}\\
\end{tabular}}
\vspace*{0.3cm}
\begin{tabular}{ccc}
\hspace*{0.28cm}\scalebox{0.645}{%
\begin{tabular}{|c|c|c|}
\hline
Hypothese & Allgemeine Richtung & Hauptspannungsrichtung\\\hline
NH &$\frac{(\sigma_x + \sigma_y) + \sqrt{(\sigma_x - \sigma_y)^2 + 4 \tau_{xy}^2}}{2}$ & $\text{max}(\left|\sigma_1\right|,\left|\sigma_2\right|)$\\\hline
SH & \specialcelltwo{$\sqrt{(\sigma_x - \sigma_y)^2 + 4 \tau_{xy}^2}$ (für $\sigma_x\sigma_y \le \tau_{xy}^2$)\\$\frac{(\sigma_x + \sigma_y) + \sqrt{(\sigma_x - \sigma_y)^2 + 4 \tau_{xy}^2}}{2}$ (für $\sigma_x\sigma_y > \tau_{xy}^2$)} & \specialcelltwo{$\text{max} \{\left|\sigma_1\right|, \left|\sigma_2\right|\}$ (gleiche Vorzeichen)\\$(\left|\sigma_1\right| - \left|\sigma_2\right|)$ (unterschiedliche Vorzeichen)}\\\hline
GEH & $\sqrt{\sigma_x^2 + \sigma_y^2 -\sigma_x\sigma_y + 3\tau_{xy}^2}$ & $\sqrt{\sigma_1^2 + \sigma_2^2 - \sigma_1\sigma_2}$ \\\hline
\end{tabular}}&
%some image \hspace{0.2cm}\raisebox{-.5\height}{\includegraphics[scale=0.175]{zweiachsig.png}}
&
\specialcelltwo{Zweiachsiger ebener\\ Spannungszustand\\(Duktil)}\\
\end{tabular}
\addvbuffer[-0.1cm 0.2cm]{\begin{tabular}{ccc}
\scalebox{0.577}{%
\hspace*{1.2cm}
\begin{tabular}{|c|c|c|}
\hline
Hypothese & Allgemeine Richtung & Hauptspannungsrichtung\\\hline
NH & & $\text{max}\{\left|\sigma_1\right|,\left|\sigma_2\right|, \left|\sigma_3\right|\}$ \\\hline
SH & & $\text{max}\{\left|\sigma_1 - \sigma_2\right|,\left|\sigma_2 - \sigma_3\right|, \left|\sigma_3 - \sigma_1\right|\}$ \\\hline
GEH & $\sqrt{\sigma_x^2 + \sigma_y^2 + \sigma_z^2 - \sigma_x\sigma_y - \sigma_x\sigma_z - \sigma_y\sigma_z + 3(\tau_{xy}^2 + \tau_{xz}^2 + \tau_{yz}^2)}$ & $\sqrt{\frac{(\sigma_1-\sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}{2}}$ \\\hline
\end{tabular}}&
%some image \hspace{0.2cm}\raisebox{-.45\height}{\includegraphics[scale=0.17]{dreiachsig.png}}
&
\specialcelltwo{Dreiachsiger räumlicher\\ Spannungszustand\\(Duktil)}
\vspace*{0.2cm}
\end{tabular}}
\end{document}
테이블의 크기를 조정한 방식이 매우 까다롭고 축소된 테이블이 거칠어 보이기 때문에 마음에 들지 않습니다. 또한, 표 내부의 방정식이 셀 높이에 맞지 않아 이 문제를 해결할 방법을 찾을 수 없습니다.
셀 내의 내용 크기에 맞는 고정된 너비와 높이의 테이블을 생성하는 더 좋은 방법이 있습니까?
끔찍한 코드로 인해 죄송합니다. 하지만 이것이 제가 원하는 결과를 얻을 수 있는 유일한 방법이었습니다. 어떤 제안이라도 감사드립니다.
감사해요!
답변1
테이블 크기 조정을 피하세요. 여전히 초과 가득에 대한 몇 가지 경고가 있지만 피팅에 더 가깝습니다. 또한 \left\right
여기에서 감당할 수 없는 추가 수평 공간을 추가하고 연산자 간격을 얻는 \max
대신 사용되는 스퓨리어스를 제거했습니다 .\text{max}
\documentclass[12pt]{article}
\usepackage[a4paper, top = 0.8cm, left = 1cm, right = 1cm, bottom = 0.8cm]{geometry}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{tikz}
\usepackage{verbatimbox}
\newcommand{\specialcell}[2][c]{\renewcommand\arraystretch{1}%
\begin{tabular}[#1]{@{}l@{}}#2\end{tabular}}
\newcommand{\specialcelltwo}[2][c]{\renewcommand\arraystretch{1}\scriptsize
\begin{tabular}[#1]{@{}c@{}}#2\end{tabular}}
\usepackage{array}
\begin{document}
\centering
\footnotesize \renewcommand\arraystretch{2}\setlength\extrarowheight{2pt}
\underline{\bfseries Vergleichsspannungen }
\medskip
\begin{tabular}{@{}ccc@{}}
\begin{tabular}{@{}|c|p{5.6cm}|p{5.7cm}|@{}}
\hline
Hypothese & Allgemeine Richtung & Hauptspannungsrichtung\\\hline
NH & $\frac{1}{2}(\lvert\sigma_x\rvert + \sqrt{\sigma_x^2 + 4 \tau_{xy}^2})$ & $\lvert\sigma_1\rvert$\\\hline
SH & $\sqrt{\sigma_x^2 + 4 \tau_{xy}^2}$ & $\lvert\sigma_1\rvert$\\\hline
GEH & $\sqrt{\sigma_x^2 + 3\tau_{xy}^2}$ & $\lvert\sigma_1\rvert$ \\\hline
\end{tabular}&
\raisebox{-.5\height}{\includegraphics[width=1cm]{example-image}}
&
\specialcelltwo{Einachsiger\\ ebener\\ Spannungszustand\\(Spröde)}\\
\end{tabular}
\vspace*{0.3cm}
\begin{tabular}{@{}ccc@{}}
\begin{tabular}{@{}|c|p{5.6cm}|p{5.7cm}|@{}}
\hline
Hypothese & Allgemeine Richtung & Hauptspannungsrichtung\\\hline
NH &$\frac{(\sigma_x + \sigma_y) + \sqrt{(\sigma_x - \sigma_y)^2 + 4 \tau_{xy}^2}}{2}$ & $\max(\lvert\sigma_1\rvert,\lvert\sigma_2\rvert)$\\\hline
SH & \specialcelltwo{$\sqrt{(\sigma_x - \sigma_y)^2 + 4 \tau_{xy}^2}$ (für $\sigma_x\sigma_y \le \tau_{xy}^2$)\\$\frac{(\sigma_x + \sigma_y) + \sqrt{(\sigma_x - \sigma_y)^2 + 4 \tau_{xy}^2}}{2}$ (für $\sigma_x\sigma_y > \tau_{xy}^2$)} &
$\max \{\lvert\sigma_1\rvert, \lvert\sigma_2\rvert\}$ (gleiche Vorzeichen)
$(\lvert\sigma_1\rvert - \lvert\sigma_2\rvert)$ (unterschiedliche Vorzeichen)\\\hline
GEH & $\sqrt{\sigma_x^2 + \sigma_y^2 -\sigma_x\sigma_y + 3\tau_{xy}^2}$ & $\sqrt{\sigma_1^2 + \sigma_2^2 - \sigma_1\sigma_2}$ \\\hline
\end{tabular}&
\raisebox{-.5\height}{\includegraphics[width=1cm]{example-image-a}}
&
\specialcelltwo{Zweiachsiger\\ ebener\\ Spannungszustand\\(Duktil)}\\
\end{tabular}
\vspace*{0.3cm}
\begin{tabular}{@{}ccc@{}}
\begin{tabular}{@{}|c|p{5.6cm}|p{5.7cm}|@{}}
\hline
Hypothese & Allgemeine Richtung & Hauptspannungsrichtung\\\hline
NH & & $\max\{\lvert\sigma_1\rvert,\lvert\sigma_2\rvert, \lvert\sigma_3\rvert\}$ \\\hline
SH & & $\max\{\lvert\sigma_1 - \sigma_2\rvert,\lvert\sigma_2 - \sigma_3\rvert, \lvert\sigma_3 - \sigma_1\rvert\}$ \\\hline
GEH & $\sqrt{
\begin{gathered}\sigma_x^2 + \sigma_y^2 + \sigma_z^2 - \sigma_x\sigma_y- \sigma_x\sigma_z - \sigma_y\sigma_z\\
\quad + 3(\tau_{xy}^2 + \tau_{xz}^2 + \tau_{yz}^2)
\end{gathered}}$ &
$\sqrt{\frac{(\sigma_1-\sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}{2}}$ \\\hline
\end{tabular}&
\raisebox{-.5\height}{\includegraphics[width=1cm]{example-image-b}}
&
\specialcelltwo{Dreiachsiger\\ räumlicher\\ Spannungszustand\\(Duktil)}
\vspace*{0.2cm}
\end{tabular}
\noindent X\dotfill X
\end{document}