
Eu tenho o seguinte código :
\usepackage{amsmath, amsthm}
\begin{document}
\begin{align}
\begin{split}
Case 1:\\
\text{5 is a square modulo q and 29 is not a square modulo q from which we obtain} \label{529spilt}\\
q \equiv \pm 1 \pmod{5} \,\, \text{and} \,\, q \equiv 2,3,8,10,11,12,14,15,17,18,19,21,26,27 \pmod{29}\\
Case 2:\\
\text{5 is not a square modulo q and 29 is a square modulo q from which we obtain} \\
q \equiv \pm 2 \pmod{5} \,\, \text{and} \,\, q \equiv 1,4,5,6,7,9,13,16,20,22,23,24,25,28 \pmod{29}
\end{split}
\end{align}
\end{document}
Usei alinhar ambiente porque quero numerar essas frases, mas ficou bem confuso. (Consulte a imagem em anexo). Existe uma maneira melhor de escrever?
Responder1
Não tenho certeza se você realmente deseja rotular um grande pedaço de texto como se fosse uma equação, mas aqui está uma versão diferente:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{equation} \label{529spilt}
\begin{minipage}{0.8\displaywidth}
Case 1: $5$ is a square modulo $q$ and $29$ is not a square modulo $q$
from which we obtain \\[.5\abovedisplayskip]
\hspace*{1.5em}$q \equiv \pm 1 \pmod{5}$ and \\
\hspace*{1.5em}$q \equiv 2,3,8,10,11,12,14,15,17,18,19,21,26,27 \pmod{29}$
\vspace{.5\belowdisplayskip}
Case 2: $5$ is not a square modulo $q$ and $29$ is a square modulo $q$
from which we obtain \\[.5\abovedisplayskip]
\hspace*{1.5em}$q \equiv \pm 2 \pmod{5}$ and \\
\hspace*{1.5em}$q \equiv 1,4,5,6,7,9,13,16,20,22,23,24,25,28 \pmod{29}$
\end{minipage}
\end{equation}
\end{document}
Aqui está uma realização diferente:
\documentclass{article}
\usepackage{amsmath}
\usepackage{lipsum} % just for the example
\begin{document}
\lipsum[2]
\begin{subequations}\label{529spilt}
\begin{description}
\item[Case 1:] $5$ is a square modulo $q$ and $29$ is not a square modulo $q$
from which we obtain
\begin{align}
q &\equiv \pm 1 \pmod{5} \quad\text{and} \\
q &\equiv 2,3,8,10,11,12,14,15,17,18,19,21,26,27 \pmod{29}
\intertext{%
\item[Case 2:] $5$ is not a square modulo $q$ and $29$ is a square modulo $q$
from which we obtain
}
q &\equiv \pm 2 \pmod{5} \quad\text{and} \\
q &\equiv 1,4,5,6,7,9,13,16,20,22,23,24,25,28 \pmod{29}
\end{align}
\end{description}
\end{subequations}
\lipsum[3]
\end{document}
Responder2
Aqui está uma solução baseada em flalign
amsmath e \shortintertext
em mathtools
:
\documentclass{article}
\usepackage[showframe]{geometry}
\usepackage{mathtools}
\begin{document}
Text text text text text text text text text text text text text text text text text text text.
\begin{flalign}
\shortintertext{\parbox{\linewidth}{\emph{Case 1:}
\\ $ 5 $ is a square modulo $ q $ and $ 29 $ is not a square modulo $ q $ from which we obtain}}%
\notag%
& & & q \equiv \pm 1 \pmod{5}\enspace \text{and}\enspace q \equiv 2,3, 8,10, 11, 12, 14, 15, 17, 18, 19, 21, 26, 27 \pmod{29}& & \\[-0.3\baselineskip]
\label{foo} \\[-0.7\baselineskip]
\shortintertext{\parbox{\linewidth}{\emph{Case 2:}\\
$ 5 $ is not a square modulo $ q $ and $ 29 $ is a square modulo $ q $ from which we obtain}}%
\notag%
& & & q \equiv \pm 2 \pmod{5}\enspace \text{and}\enspace q \equiv 1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28 \pmod{29}& &
\end{flalign}
\end{document}