問題

問題

介紹

我目前正在完成我的論文。為了遵循導師設定的學術標準,我需要盡可能模仿下圖所示的文件風格。

圖片

第2章

第2.1節

問題

到目前為止我所擁有的如下所示。頁面格式正確,我能夠模仿標題。然而,字體似乎是錯誤的,章節的大小似乎不對。

抱歉,我無法存取掃描器或 pdf 文件。有沒有更簡單的方法(或者這種風格是否已知?),或者我是否必須對所有內容進行硬編碼以匹配上面的圖像?

程式碼

\documentclass[pdftex,
                 10pt, 
              b5paper, 
              twoside, 
                english,
                dvipsnames,
                leqno]{book}

                
\usepackage[lmargin=25mm,
            rmargin=25mm,
            tmargin=27mm,
            bmargin=30mm]{geometry}


    \usepackage{sectsty} %Centers chapters, sections and subsections. 
        \chapterfont{\centering}
        \sectionfont{\centering}
        \subsectionfont{\centering}
        \chapternumberfont{\centering \scshape} 


    \usepackage{xpatch} %Makes the proof environment cursive
    \xpatchcmd{\proof}{\scshape}{\scshape\proofnameformat}{}{}
    \newcommand{\proofnameformat}{\scshape}
    
    
    \usepackage{lipsum}
    
    % Math needs to be loaded before amsthm, so QED can hook into align*
    \usepackage{amsmath, amssymb, mathrsfs, mathtools, amsopn} %Mathematical symbols
        
        \usepackage[amsmath, amsthm, thmmarks]{ntheorem} %Defines theorems and definitions
        %
        % Note that we use the same counter [mydef] for definitions, theorems, lemmas, propositions and corolaries
        \theoremstyle{definition} %Non cursive
            \newtheorem{mydef}{\normalfont\scshape Definition\normalfont}[section]
            \newtheorem*{remark}{\normalfont\scshape Remark\normalfont}
        
        \theoremstyle{plain} %cursive 
            \newtheorem{mylemma}[mydef]{\normalfont\scshape Lemma\normalfont}
            \newtheorem{myprop}[mydef]{\normalfont\scshape Proposition\normalfont}
            \newtheorem{mythe}[mydef]{\normalfont\scshape Theorem\normalfont}
            \newtheorem{mycor}[mydef]{\normalfont\scshape Corollary\normalfont}    

\begin{document}

\stepcounter{chapter}

\chapter{Smooth numbers}

\begin{mydef}
    \lipsum[66]
\end{mydef}

\section{Dickman's function}

In this section, we study \emph{Dickman's function} The function $\rho \colon \mathbb{R} \to \mathbb{R}$ is defined by the initial condition $\rho(u) = 1$ for $0 \leq u \leq 1$ and recursively
%
\begin{align}
    \rho(u) = \rho(k) + \int_k^u \rho(v-1) \frac{\mathrm{d}v}v, \quad k \in \mathbb{N}.
\end{align}
%
We obtain the following properties of the Dickman's function. 
\begin{mylemma}
    \lipsum[75]
\end{mylemma}
%
\begin{proof}
    \lipsum[66]
\end{proof}

\end{document}

答案1

如果我很好理解的話,這裡的程式碼應該可以完成您想要的操作。我刪除了該amsthm選項ntheorem,並使用ntheorem.對於部分佈局,我使用了 titlesec.我還簡化了程式碼,不載入由其他套件載入的套件(例如“amsopn is loaded byamsmath , which is loaded bymathtools”)。

\documentclass[10pt, b5paper, twoside, english, dvipsnames, leqno]{book}

\usepackage[hmargin=25mm, tmargin=27mm, bmargin=30mm]{geometry}

\usepackage{titlesec}
\titleformat{\chapter}[display]{\centering}{\Large\MakeUppercase{\chaptername~\thechapter}}{2\baselineskip}{\LARGE\bfseries}
\titleformat{\section}[block]{\large\bfseries\centering}{\thesection.}{0.5em}{}

\usepackage{lipsum}

% Math needs to be loaded before amsthm, so QED can hook into align*
\usepackage{ amssymb, mathrsfs, mathtools} %Mathematical symbols

\usepackage[amsmath, thmmarks, thref]{ntheorem} %Defines theorems and definitions amsthm,
\theoremstyle{plain} %Non cursive
\theoremheaderfont{\scshape\mdseries}
\theorembodyfont{\normalfont}
\theoremseparator{.}
    \newtheorem{mydef}{Definition}[section]
    \newtheorem*{remark}{\normalfont\scshape Remark\normalfont}
\theorembodyfont{\itshape}
    \newtheorem{mylemma}[mydef]{Lemma}
    \newtheorem{myprop}[mydef]{Proposition}
    \newtheorem{mythe}[mydef]{Theorem}
    \newtheorem{mycor}[mydef]{Corollary}

\theoremstyle{nonumberplain}
\theoremheaderfont{\itshape}
\theorembodyfont{\normalfont}
\theoremsymbol{\ensuremath{\square}}
\newtheorem{proof}{Proof}

\begin{document}

\stepcounter{chapter}

\chapter{Smooth numbers}

\begin{mydef}
  \lipsum[66]
\end{mydef}

\section{Dickman's function}

In this section, we study \emph{Dickman's function} The function $ρ\colon \mathbb{R} \to \mathbb{R}$ is defined by the initial condition $ρ(u) = 1$ for $0 \leq u \leq 1$ and recursively
%
\begin{align}
  ρ(u) = ρ(k) + ∫_k^u ρ(v-1) \frac{\mathrm{d}v}v, \quad k ∈ \mathbb{N}.
\end{align}
%
We obtain the following properties of the Dickman's function.
\begin{mylemma}
  \lipsum[75]
\end{mylemma}

\begin{proof}
  Nunc sed pede. Praesent vitae lectus. Praesent neque justo, vehicula eget,
  interdum id, facilisis et, nibh. Phasellus at purus et libero lacinia dictum. Fusce
  aliquet. Nulla eu ante placerat leo semper dictum. Mauris metus. Curabitur
  lobortis. Curabitur sollicitudin hendrerit nunc. Donec ultrices lacus id ipsum.
\end{proof}

在此輸入影像描述 \結束{文件}

相關內容