![不同對齊環境的對齊](https://rvso.com/image/400369/%E4%B8%8D%E5%90%8C%E5%B0%8D%E9%BD%8A%E7%92%B0%E5%A2%83%E7%9A%84%E5%B0%8D%E9%BD%8A.png)
當我嘗試調整不同的“對齊”環境時遇到問題。這是我的乳膠代碼:
\documentclass[10pt, a4paper]{article}
\usepackage[english]{babel}
\usepackage[english]{isodate}
\usepackage[T1]{fontenc}
\usepackage[hidelinks]{hyperref}
\usepackage[utf8]{inputenc}
\usepackage{mathtools}
\usepackage{amsmath}
\usepackage{amssymb}
\begin{document}
\section{Example}
\subsection*{Degree 1}
\begin{align*}
C_1' & = C_1 \\
C_0' & = a_k + C_0
\end{align*}
\subsection*{Degree 2}
\begin{align*}
C_2' & = C_2 \\
C_1' & = 2 C_2 a_k + C_1 \\
C_0' & = C_2 a_k^2 + C_1 a_k + C_0
\end{align*}
\subsection*{Degree 3}
\begin{align*}
C_3' & = C_3 \\
C_2' & = 3 C_3 a_k + C_2 \\
C_1' & = 3 C_3 a_k^2 + 2 C_2 a_k + C_1 \\
C_0' & = C_3 a_k^3 + C_2 a_k^2 + C_1 a_k + C_0
\end{align*}
\subsection*{Degree 4}
\begin{align*}
C_4' & = C_4 \\
C_3' & = 4 C_4 a_k + C_3 \\
C_2' & = 6 C_4 a_k^2 + 3 C_3 a_k + C_2 \\
C_1' & = 4 C_4 a_k^3 + 3 C_3 a_k^2 + 2 C_2 a_k + C_1 \\
C_0' & = C_4 a_k^4 + C_3 a_k^3 + C_2 a_k^2 + C_1 a_k + C_0
\end{align*}
\subsection*{Degree 5}
\begin{align*}
C_5' & = C_5 \\
C_4' & = 5 C_5 a_k + C_4 \\
C_3' & = 10 C_5 a_k^2 + 4 C_4 a_k + C_3 \\
C_2' & = 10 C_5 a_k^3 + 6 C_4 a_k^2 + 3 C_3 a_k + C_2 \\
C_1' & = 5 C_5 a_k^4 + 4 C_4 a_k^3 + 3 C_3 a_k^2 + 2 C_2 a_k + C_1 \\
C_0' & = C_5 a_k^5 + C_4 a_k^4 + C_3 a_k^3 + C_2 a_k^2 + C_1 a_k + C_0
\end{align*}
\end{document}
這是輸出:
正如您所看到的,方程式並沒有很好地對齊。我想將它們的左側對齊在同一行,但將它們保持在頁面的中間(這清楚嗎?)
答案1
和\intertext
:
\documentclass[10pt, a4paper]{article}
\usepackage[english]{babel}
\usepackage[english]{isodate}
\usepackage[T1]{fontenc}
\usepackage[hidelinks]{hyperref}
\usepackage[utf8]{inputenc}
\usepackage{mathtools}
\usepackage{amsmath}
\usepackage{amssymb}
\begin{document}
\section{Example}
\subsection*{Degree 1}
\begin{align*}
C_1' & = C_1 \\
C_0' & = a_k + C_0
%
\intertext{\subsection*{Degree 2}}
C_2' & = C_2 \\
C_1' & = 2 C_2 a_k + C_1 \\
C_0' & = C_2 a_k^2 + C_1 a_k + C_0
%
\intertext{\subsection*{Degree 3}}
C_3' & = C_3 \\
C_2' & = 3 C_3 a_k + C_2 \\
C_1' & = 3 C_3 a_k^2 + 2 C_2 a_k + C_1 \\
C_0' & = C_3 a_k^3 + C_2 a_k^2 + C_1 a_k + C_0
%
\intertext{\subsection*{Degree 4}}
C_4' & = C_4 \\
C_3' & = 4 C_4 a_k + C_3 \\
C_2' & = 6 C_4 a_k^2 + 3 C_3 a_k + C_2 \\
C_1' & = 4 C_4 a_k^3 + 3 C_3 a_k^2 + 2 C_2 a_k + C_1 \\
C_0' & = C_4 a_k^4 + C_3 a_k^3 + C_2 a_k^2 + C_1 a_k + C_0
%
\intertext{\subsection*{Degree 5}}
C_5' & = C_5 \\
C_4' & = 5 C_5 a_k + C_4 \\
C_3' & = 10 C_5 a_k^2 + 4 C_4 a_k + C_3 \\
C_2' & = 10 C_5 a_k^3 + 6 C_4 a_k^2 + 3 C_3 a_k + C_2 \\
C_1' & = 5 C_5 a_k^4 + 4 C_4 a_k^3 + 3 C_3 a_k^2 + 2 C_2 a_k + C_1 \\
C_0' & = C_5 a_k^5 + C_4 a_k^4 + C_3 a_k^3 + C_2 a_k^2 + C_1 a_k + C_0
\end{align*}
\end{document}