Ich möchte die endgültige Drehung mit Euler-Winkeln durchführen. In diesem LinkEuler-Winkel, die letzte Rotation durchläuft drei aufeinanderfolgende Rotationen, beginnend mit dem Frame (x,y,z), durch (x',y',z') und dann (x'',y'',z'') und endet schließlich mit dem Frame (x''',y''',z'''). Ich habe das gesehenPostund es hat mir bis zu einem gewissen Grad geholfen. In meinem Fall ergibt die erste Rotation
Die zweite Drehung ergibt
Nun ergibt die dritte Drehung nicht das, was im oben genannten Link steht.
x2, x3 sollten in die gleiche Richtung zeigen.
Dies ist der Code
\documentclass[preview,varwidth ,multi,border=3pt]{standalone}
\usepackage{tikz}
\usepackage{tikz-3dplot}
\usepackage[active,tightpage]{preview}
\PreviewEnvironment{tikzpicture}
\setlength\PreviewBorder{1cm}
\begin{document}
\tdplotsetmaincoords{70}{100}
\begin{tikzpicture}[scale=5,tdplot_main_coords]
\coordinate (O) at (0,0,0);
% main Frame (x,y,z)
\draw[thick,->,line width=0.55mm] (O) -- (2.0,0,0) node[anchor=north west]{$X$};
\draw[thick,->,line width=0.55mm] (O) -- (0,2.0,0) node[anchor=west] {$Y$};
\draw[thick,->,line width=0.55mm] (O) -- (0,0,2.0) node[anchor=south] {$Z$};
% define yaw, pitch, and roll
\def \yaw {30}
\def \roll {30}
\def \pitch {30}
%_____________________________________________________________________
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%( Yaw )%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% First rotation yields Frame 1 (about z axis main)
% Frame 1 (x1,y1, z1)
\tdplotsetrotatedcoords{\yaw}{0}{0}
\draw[thick,->,line width=0.65mm, color=red, tdplot_rotated_coords]
(O) -- (1.5,0,0) node[xshift=0mm,anchor=north west] {$x^{1}$};
\draw[thick,->,line width=0.65mm, color=red, tdplot_rotated_coords]
(O) -- (0,1.5,0) node[anchor=west]{$y^{1}$};
\draw[thick,->,line width=0.65mm, color=red, tdplot_rotated_coords]
(O) -- (0,0,1.5) node[anchor=south,xshift=3mm, yshift=-1mm]{$z^{1}$};
%_____________________________________________________________________
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%( Pitch )%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Second rotation yields Frame 2 (about y1 axis)
% Frame 2 (x2,y2, z2)
\tdplotsetrotatedcoords{\yaw}{\pitch}{0}
\draw[thick,->,line width=0.65mm, color=blue, tdplot_rotated_coords]
(O) -- (1.0,0,0) node[xshift=0mm,anchor=north west]{$x^{2}$};
\draw[thick,->,line width=0.65mm, color=blue,tdplot_rotated_coords]
(O) -- (0,1.0,0) node[anchor=west]{$y^{2}$};
\draw[thick,->,line width=0.65mm, color=blue,tdplot_rotated_coords]
(O) -- (0,0,1.0) node[anchor=south,xshift=3mm, yshift=-1mm]{$z^{2}$};
%_____________________________________________________________________
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%( Roll )%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Third rotation yields Frame 3 (about x2 axis) <-- (it should be )
% Frame 3 (x3,y3,z3)
\tdplotsetrotatedcoords{\yaw}{\pitch}{\roll}
\draw[thick,->,line width=0.65mm, color=green, tdplot_rotated_coords]
(O) -- (0.5,0,0) node[xshift=0mm,anchor=north west]{$x^{3}$};
\draw[thick,->,line width=0.65mm, color=green,tdplot_rotated_coords]
(O) -- (0,0.5,0) node[anchor=west]{$y^{3}$};
\draw[thick,->,line width=0.65mm, color=green,tdplot_rotated_coords]
(O) -- (0,0,.5) node[anchor=south]{$z^{3}$};
\end{tikzpicture}
\end{document}
Antwort1
Ich denke, das könnte ein Duplikat sein vonNavigationssystemkoordinaten in tikz-3dplot: Standardmäßig tikz-3dplot
wird die Rotationsreihenfolge ZYZ verwendet (d. h. es wird zuerst um die Z-Achse gedreht, dann um die neue Y-Achse Y', dann um die neue Z-Achse Z''), während Sie die Rotationsreihenfolge ZYX wünschen. Dazu müssen Sie die Transformationsparameter neu definieren:
\newcommand{\tdseteulerxyz}{
\renewcommand{\tdplotcalctransformrotmain}{%
%perform some trig for the Euler transformation
\tdplotsinandcos{\sinalpha}{\cosalpha}{\tdplotalpha}
\tdplotsinandcos{\sinbeta}{\cosbeta}{\tdplotbeta}
\tdplotsinandcos{\singamma}{\cosgamma}{\tdplotgamma}
%
\tdplotmult{\sasb}{\sinalpha}{\sinbeta}
\tdplotmult{\sasg}{\sinalpha}{\singamma}
\tdplotmult{\sasbsg}{\sasb}{\singamma}
%
\tdplotmult{\sacb}{\sinalpha}{\cosbeta}
\tdplotmult{\sacg}{\sinalpha}{\cosgamma}
\tdplotmult{\sasbcg}{\sasb}{\cosgamma}
%
\tdplotmult{\casb}{\cosalpha}{\sinbeta}
\tdplotmult{\cacb}{\cosalpha}{\cosbeta}
\tdplotmult{\cacg}{\cosalpha}{\cosgamma}
\tdplotmult{\casg}{\cosalpha}{\singamma}
%
\tdplotmult{\cbsg}{\cosbeta}{\singamma}
\tdplotmult{\cbcg}{\cosbeta}{\cosgamma}
%
\tdplotmult{\casbsg}{\casb}{\singamma}
\tdplotmult{\casbcg}{\casb}{\cosgamma}
%
%determine rotation matrix elements for Euler transformation
\pgfmathsetmacro{\raaeul}{\cacb}
\pgfmathsetmacro{\rabeul}{\casbsg - \sacg}
\pgfmathsetmacro{\raceul}{\sasg + \casbcg}
\pgfmathsetmacro{\rbaeul}{\sacb}
\pgfmathsetmacro{\rbbeul}{\sasbsg + \cacg}
\pgfmathsetmacro{\rbceul}{\sasbcg - \casg}
\pgfmathsetmacro{\rcaeul}{-\sinbeta}
\pgfmathsetmacro{\rcbeul}{\cbsg}
\pgfmathsetmacro{\rcceul}{\cbcg}
}
}
Anschließend können Sie die neue Rotationsreihenfolge mit aktivieren \tdseteulerxyz
.
Hier ist der vollständige Code:
\documentclass[border=3pt]{standalone}
\usepackage{tikz}
\usepackage{tikz-3dplot}
\newcommand{\tdseteulerxyz}{
\renewcommand{\tdplotcalctransformrotmain}{%
%perform some trig for the Euler transformation
\tdplotsinandcos{\sinalpha}{\cosalpha}{\tdplotalpha}
\tdplotsinandcos{\sinbeta}{\cosbeta}{\tdplotbeta}
\tdplotsinandcos{\singamma}{\cosgamma}{\tdplotgamma}
%
\tdplotmult{\sasb}{\sinalpha}{\sinbeta}
\tdplotmult{\sasg}{\sinalpha}{\singamma}
\tdplotmult{\sasbsg}{\sasb}{\singamma}
%
\tdplotmult{\sacb}{\sinalpha}{\cosbeta}
\tdplotmult{\sacg}{\sinalpha}{\cosgamma}
\tdplotmult{\sasbcg}{\sasb}{\cosgamma}
%
\tdplotmult{\casb}{\cosalpha}{\sinbeta}
\tdplotmult{\cacb}{\cosalpha}{\cosbeta}
\tdplotmult{\cacg}{\cosalpha}{\cosgamma}
\tdplotmult{\casg}{\cosalpha}{\singamma}
%
\tdplotmult{\cbsg}{\cosbeta}{\singamma}
\tdplotmult{\cbcg}{\cosbeta}{\cosgamma}
%
\tdplotmult{\casbsg}{\casb}{\singamma}
\tdplotmult{\casbcg}{\casb}{\cosgamma}
%
%determine rotation matrix elements for Euler transformation
\pgfmathsetmacro{\raaeul}{\cacb}
\pgfmathsetmacro{\rabeul}{\casbsg - \sacg}
\pgfmathsetmacro{\raceul}{\sasg + \casbcg}
\pgfmathsetmacro{\rbaeul}{\sacb}
\pgfmathsetmacro{\rbbeul}{\sasbsg + \cacg}
\pgfmathsetmacro{\rbceul}{\sasbcg - \casg}
\pgfmathsetmacro{\rcaeul}{-\sinbeta}
\pgfmathsetmacro{\rcbeul}{\cbsg}
\pgfmathsetmacro{\rcceul}{\cbcg}
}
}
\begin{document}
\tdseteulerxyz
\tdplotsetmaincoords{70}{100}
\begin{tikzpicture}[scale=5,tdplot_main_coords]
\coordinate (O) at (0,0,0);
% main Frame (x,y,z)
\draw[thick,->,line width=0.55mm] (O) -- (2.0,0,0) node[anchor=north west]{$X$};
\draw[thick,->,line width=0.55mm] (O) -- (0,2.0,0) node[anchor=west] {$Y$};
\draw[thick,->,line width=0.55mm] (O) -- (0,0,2.0) node[anchor=south] {$Z$};
% define yaw, pitch, and roll
\def \yaw {30}
\def \roll {30}
\def \pitch {30}
%_____________________________________________________________________
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%( Yaw )%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% First rotation yields Frame 1 (about z axis main)
% Frame 1 (x1,y1, z1)
\tdplotsetrotatedcoords{\yaw}{0}{0}
\draw[thick,->,line width=0.65mm, color=red, tdplot_rotated_coords]
(O) -- (1.5,0,0) node[xshift=0mm,anchor=north west] {$x^{1}$};
\draw[thick,->,line width=0.65mm, color=red, tdplot_rotated_coords]
(O) -- (0,1.5,0) node[anchor=west]{$y^{1}$};
\draw[thick,->,line width=0.65mm, color=red, tdplot_rotated_coords]
(O) -- (0,0,1.5) node[anchor=south,xshift=3mm, yshift=-1mm]{$z^{1}$};
%_____________________________________________________________________
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%( Pitch )%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Second rotation yields Frame 2 (about y1 axis)
% Frame 2 (x2,y2, z2)
\tdplotsetrotatedcoords{\yaw}{\pitch}{0}
\draw[thick,->,line width=0.65mm, color=blue, tdplot_rotated_coords]
(O) -- (1.0,0,0) node[xshift=0mm,anchor=north west]{$x^{2}$};
\draw[thick,->,line width=0.65mm, color=blue,tdplot_rotated_coords]
(O) -- (0,1.0,0) node[anchor=west]{$y^{2}$};
\draw[thick,->,line width=0.65mm, color=blue,tdplot_rotated_coords]
(O) -- (0,0,1.0) node[anchor=south,xshift=3mm, yshift=-1mm]{$z^{2}$};
%_____________________________________________________________________
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%( Roll )%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Third rotation yields Frame 3 (about x2 axis) <-- (it should be )
% Frame 3 (x3,y3,z3)
\tdplotsetrotatedcoords{\yaw}{\pitch}{\roll}
\draw[thick,->,line width=0.65mm, color=green, tdplot_rotated_coords]
(O) -- (0.5,0,0) node[xshift=0mm,anchor=north west]{$x^{3}$};
\draw[thick,->,line width=0.65mm, color=green,tdplot_rotated_coords]
(O) -- (0,0.5,0) node[anchor=west]{$y^{3}$};
\draw[thick,->,line width=0.65mm, color=green,tdplot_rotated_coords]
(O) -- (0,0,.5) node[anchor=south]{$z^{3}$};
\end{tikzpicture}
\end{document}