¿Cómo se pueden dividir las ecuaciones entre páginas?

¿Cómo se pueden dividir las ecuaciones entre páginas?

Al agregar un gran conjunto de ecuaciones en una matriz, hay un problema con la división de páginas. Aquí hay un ejemplo problemático,

\documentclass[12pt,a4paper]{report}
\usepackage[left=2.5 cm,right=2.5 cm,top=3.5 cm,bottom=3.5 cm]{geometry}
\usepackage{amssymb,amsmath}
\usepackage{slashed,cancel}
\usepackage{hyperref}
\usepackage{setspace}
\usepackage{appendix}
\usepackage{color,colortbl}
\usepackage[table]{xcolor}
%%% footnote
\usepackage{fancyhdr}
\usepackage{changepage}
%%change head foot font
\fancyhf{}
\newcommand{\changefont}{\fontsize{7}{9}\selectfont} %% change font size in header
\renewcommand{\subsectionmark}[1]{\markright{\MakeUppercase{   \thesubsection\ #1}}} % header layout for subsection
\fancyhead[LE,RO]{\thepage}
\fancyhead[LO]{\color{gray}\changefont\slshape\rightmark}
\fancyhead[RE]{\leftmark}
%% for Bjornstrup
\usepackage[Bjornstrup]{fncychap}
\ChNumVar{\fontsize{76}{80}\usefont{OT1}{pzc}{m}{n}\selectfont}
\ChTitleUpperCase
\ChTitleVar{\LARGE\bf\centering}
\hypersetup{
    colorlinks=true, %set true if you want colored links
    linktoc=all,     %set to all if you want both sections and subsections linked
    linkcolor=blue,  %choose some color if you want links to stand out
    urlcolor=blue
}
\begin{document}
%% redefine page header
\fancyhead[R]{ \fontsize{12}{12} \textbar\ {\bf \thepage} }
\pagestyle{fancy}
\doublespacing

\begin{appendices}
\chapter{}
\section{This is A}
Below we present some important relations followed by the generators    $(T_{ij}^{a})$ and structure constants $(f^{abc})$ of $SU(3)_{c}$.
\begin{equation}
\begin{aligned}
\text{Tr}(T^{a} T^{b})                   &= \frac{1}{2} \delta^{ab}\\
\text{Tr}(T^{a} T^{b} T^{c})             &= \frac{1}{4} (d^{abc} +i   f^{abc})\\
\text{Tr}(T^{a} T^{b} T^{a} T^{c})       &= -\frac{1}{4N} \delta^{bc}\\
T^{a}_{ij}T^{a}_{kl}                     &= \frac{1}{2} \Big(     \delta_{il}\delta_{jk} - \frac{1}{N} \delta_{ij}\delta_{kl} \Big)\\
T^{a}_{ij}T^{a}_{jk}                     &= \frac{N^{2}-1}{2N}   \delta_{ik}\\
f^{abc}                                  &= -2i \text{Tr}(T^{a} . [T^{b},T^{c}])\\
f^{acd} f^{bcd}                          &= N \delta^{ab}\\
f^{ade}f^{bef}f^{cfd}                    &= \frac{N}{2} f^{abc}\\
d^{abc}                                  &= 2 \text{Tr}(T^{a} .   [T^{b},T^{c}])\\
\{T^{a}, T^{b} \}                        &= \frac{1}{N}\delta^{ab} +d^{abc} T^{c}\\
T^{a}T^{b}                               &= \frac{1}{2} \Big( \frac{1}{N}\delta^{ab} + (d^{abc} +i f^{abc}) T^{c} \Big)\\
\text{Tr}(T^{a}T^{b}T^{c})               &= \frac{1}{4} (d^{abc} +i   f^{abc})\\
%\iffalse
f^{acd}d^{bcd}                           &= 0\\
%\fi
\end{aligned}
\end{equation}
$d^{abc}$ is known as the symmetric structure constant and for QCD $N=3$.
\end{appendices}

\end{document}

El problema no radica en eliminar \doble espacio o eliminar una ecuación de la matriz. ¿Existe alguna solución para solucionar este problema?

Respuesta1

Ok, otra respuesta aquí, que aborda la preocupación de OP:

\documentclass{article}

\usepackage{amsmath}
\usepackage{lipsum}
\allowdisplaybreaks
\begin{document}


\lipsum[1-3]
\stepcounter{equation}
\begin{align*}
\text{Tr}(T^{a} T^{b})                   &= \frac{1}{2} \delta^{ab}\\
\text{Tr}(T^{a} T^{b} T^{c})             &= \frac{1}{4} (d^{abc} +i   f^{abc})\\
\text{Tr}(T^{a} T^{b} T^{a} T^{c})       &= -\frac{1}{4N} \delta^{bc}\\
T^{a}_{ij}T^{a}_{kl}                     &= \frac{1}{2} \Big(     \delta_{il}\delta_{jk} - \frac{1}{N} \delta_{ij}\delta_{kl} \Big)\\
T^{a}_{ij}T^{a}_{jk}                     &= \frac{N^{2}-1}{2N}   \delta_{ik}\\
f^{abc}                                  &= -2i \text{Tr}(T^{a} . [T^{b},T^{c}])\\
f^{acd} f^{bcd}                          &= N \delta^{ab} \tag{\theequation}\label{boo}\\
f^{ade}f^{bef}f^{cfd}                    &= \frac{N}{2} f^{abc}\\
d^{abc}                                  &= 2 \text{Tr}(T^{a} .   [T^{b},T^{c}])\\
\{T^{a}, T^{b} \}                        &= \frac{1}{N}\delta^{ab} +d^{abc} T^{c}\\
T^{a}T^{b}                               &= \frac{1}{2} \Big( \frac{1}{N}\delta^{ab} + (d^{abc} +i f^{abc}) T^{c} \Big)\\
\text{Tr}(T^{a}T^{b}T^{c})               &= \frac{1}{4} (d^{abc} +i   f^{abc})\\
%\iffalse
f^{acd}d^{bcd}                           &= 0
%\fi
\end{align*}

\eqref{boo}
\end{document}

Respuesta2

No es elegante, pero funciona....

El problema es que se pueden dividir ciertos entornos de visualización en varias páginas (por ejemplo, líneas múltiples, alineación), pero no alineados dentro de la ecuación. \allowdisplaybreaksayuda aquí, junto con aligny \notag.

\documentclass[12pt,a4paper]{report}
\usepackage[left=2.5 cm,right=2.5 cm,top=3.5 cm,bottom=3.5 cm]{geometry}
\usepackage{amssymb,amsmath}
\usepackage{slashed,cancel}
\usepackage{hyperref}
\usepackage{setspace}
\usepackage{appendix}
\usepackage{color,colortbl}
\usepackage[table]{xcolor}
%%% footnote
\usepackage{fancyhdr}
\usepackage{changepage}
%%change head foot font
\fancyhf{}
\newcommand{\changefont}{\fontsize{7}{9}\selectfont} %% change font size in header
\renewcommand{\subsectionmark}[1]{\markright{\MakeUppercase{   \thesubsection\ #1}}} % header layout for subsection
\fancyhead[LE,RO]{\thepage}
\fancyhead[LO]{\color{gray}\changefont\slshape\rightmark}
\fancyhead[RE]{\leftmark}
%% for Bjornstrup
\usepackage[Bjornstrup]{fncychap}
\ChNumVar{\fontsize{76}{80}\usefont{OT1}{pzc}{m}{n}\selectfont}
\ChTitleUpperCase
\ChTitleVar{\LARGE\bf\centering}
\hypersetup{
    colorlinks=true, %set true if you want colored links
    linktoc=all,     %set to all if you want both sections and subsections linked
    linkcolor=blue,  %choose some color if you want links to stand out
    urlcolor=blue
}

\fancyhead[R]{ \fontsize{12}{12} \textbar\ {\bf \thepage} }
\pagestyle{fancy}
\doublespacing
\allowdisplaybreaks 


\begin{document}
%% redefine page header

\begin{appendices}
\chapter{}
\section{This is A}
Below we present some important relations followed by the generators    $(T_{ij}^{a})$ and structure constants $(f^{abc})$ of $SU(3)_{c}$.
\begin{align}
\text{Tr}(T^{a} T^{b})                   &= \frac{1}{2} \delta^{ab}\notag\\
\text{Tr}(T^{a} T^{b} T^{c})             &= \frac{1}{4} (d^{abc} +i   f^{abc})\notag\\
\text{Tr}(T^{a} T^{b} T^{a} T^{c})       &= -\frac{1}{4N} \delta^{bc}\notag\\
T^{a}_{ij}T^{a}_{kl}                     &= \frac{1}{2} \Big(     \delta_{il}\delta_{jk} - \frac{1}{N} \delta_{ij}\delta_{kl} \Big)\notag\\
T^{a}_{ij}T^{a}_{jk}                     &= \frac{N^{2}-1}{2N}   \delta_{ik}\notag\\
f^{abc}                                  &= -2i \text{Tr}(T^{a} . [T^{b},T^{c}])\notag\\
f^{acd} f^{bcd}                          &= N \delta^{ab}\\
f^{ade}f^{bef}f^{cfd}                    &= \frac{N}{2} f^{abc}\notag\\
d^{abc}                                  &= 2 \text{Tr}(T^{a} .   [T^{b},T^{c}])\notag\\
\{T^{a}, T^{b} \}                        &= \frac{1}{N}\delta^{ab} +d^{abc} T^{c}\notag\\
T^{a}T^{b}                               &= \frac{1}{2} \Big( \frac{1}{N}\delta^{ab} + (d^{abc} +i f^{abc}) T^{c} \Big)\notag\\
\text{Tr}(T^{a}T^{b}T^{c})               &= \frac{1}{4} (d^{abc} +i   f^{abc})\notag\\
%\iffalse
f^{acd}d^{bcd}                           &= 0\notag
%\fi
\end{align}
$d^{abc}$ is known as the symmetric structure constant and for QCD $N=3$.
\end{appendices}

\end{document}

información relacionada