Al agregar un gran conjunto de ecuaciones en una matriz, hay un problema con la división de páginas. Aquí hay un ejemplo problemático,
\documentclass[12pt,a4paper]{report}
\usepackage[left=2.5 cm,right=2.5 cm,top=3.5 cm,bottom=3.5 cm]{geometry}
\usepackage{amssymb,amsmath}
\usepackage{slashed,cancel}
\usepackage{hyperref}
\usepackage{setspace}
\usepackage{appendix}
\usepackage{color,colortbl}
\usepackage[table]{xcolor}
%%% footnote
\usepackage{fancyhdr}
\usepackage{changepage}
%%change head foot font
\fancyhf{}
\newcommand{\changefont}{\fontsize{7}{9}\selectfont} %% change font size in header
\renewcommand{\subsectionmark}[1]{\markright{\MakeUppercase{ \thesubsection\ #1}}} % header layout for subsection
\fancyhead[LE,RO]{\thepage}
\fancyhead[LO]{\color{gray}\changefont\slshape\rightmark}
\fancyhead[RE]{\leftmark}
%% for Bjornstrup
\usepackage[Bjornstrup]{fncychap}
\ChNumVar{\fontsize{76}{80}\usefont{OT1}{pzc}{m}{n}\selectfont}
\ChTitleUpperCase
\ChTitleVar{\LARGE\bf\centering}
\hypersetup{
colorlinks=true, %set true if you want colored links
linktoc=all, %set to all if you want both sections and subsections linked
linkcolor=blue, %choose some color if you want links to stand out
urlcolor=blue
}
\begin{document}
%% redefine page header
\fancyhead[R]{ \fontsize{12}{12} \textbar\ {\bf \thepage} }
\pagestyle{fancy}
\doublespacing
\begin{appendices}
\chapter{}
\section{This is A}
Below we present some important relations followed by the generators $(T_{ij}^{a})$ and structure constants $(f^{abc})$ of $SU(3)_{c}$.
\begin{equation}
\begin{aligned}
\text{Tr}(T^{a} T^{b}) &= \frac{1}{2} \delta^{ab}\\
\text{Tr}(T^{a} T^{b} T^{c}) &= \frac{1}{4} (d^{abc} +i f^{abc})\\
\text{Tr}(T^{a} T^{b} T^{a} T^{c}) &= -\frac{1}{4N} \delta^{bc}\\
T^{a}_{ij}T^{a}_{kl} &= \frac{1}{2} \Big( \delta_{il}\delta_{jk} - \frac{1}{N} \delta_{ij}\delta_{kl} \Big)\\
T^{a}_{ij}T^{a}_{jk} &= \frac{N^{2}-1}{2N} \delta_{ik}\\
f^{abc} &= -2i \text{Tr}(T^{a} . [T^{b},T^{c}])\\
f^{acd} f^{bcd} &= N \delta^{ab}\\
f^{ade}f^{bef}f^{cfd} &= \frac{N}{2} f^{abc}\\
d^{abc} &= 2 \text{Tr}(T^{a} . [T^{b},T^{c}])\\
\{T^{a}, T^{b} \} &= \frac{1}{N}\delta^{ab} +d^{abc} T^{c}\\
T^{a}T^{b} &= \frac{1}{2} \Big( \frac{1}{N}\delta^{ab} + (d^{abc} +i f^{abc}) T^{c} \Big)\\
\text{Tr}(T^{a}T^{b}T^{c}) &= \frac{1}{4} (d^{abc} +i f^{abc})\\
%\iffalse
f^{acd}d^{bcd} &= 0\\
%\fi
\end{aligned}
\end{equation}
$d^{abc}$ is known as the symmetric structure constant and for QCD $N=3$.
\end{appendices}
\end{document}
El problema no radica en eliminar \doble espacio o eliminar una ecuación de la matriz. ¿Existe alguna solución para solucionar este problema?
Respuesta1
Ok, otra respuesta aquí, que aborda la preocupación de OP:
\documentclass{article}
\usepackage{amsmath}
\usepackage{lipsum}
\allowdisplaybreaks
\begin{document}
\lipsum[1-3]
\stepcounter{equation}
\begin{align*}
\text{Tr}(T^{a} T^{b}) &= \frac{1}{2} \delta^{ab}\\
\text{Tr}(T^{a} T^{b} T^{c}) &= \frac{1}{4} (d^{abc} +i f^{abc})\\
\text{Tr}(T^{a} T^{b} T^{a} T^{c}) &= -\frac{1}{4N} \delta^{bc}\\
T^{a}_{ij}T^{a}_{kl} &= \frac{1}{2} \Big( \delta_{il}\delta_{jk} - \frac{1}{N} \delta_{ij}\delta_{kl} \Big)\\
T^{a}_{ij}T^{a}_{jk} &= \frac{N^{2}-1}{2N} \delta_{ik}\\
f^{abc} &= -2i \text{Tr}(T^{a} . [T^{b},T^{c}])\\
f^{acd} f^{bcd} &= N \delta^{ab} \tag{\theequation}\label{boo}\\
f^{ade}f^{bef}f^{cfd} &= \frac{N}{2} f^{abc}\\
d^{abc} &= 2 \text{Tr}(T^{a} . [T^{b},T^{c}])\\
\{T^{a}, T^{b} \} &= \frac{1}{N}\delta^{ab} +d^{abc} T^{c}\\
T^{a}T^{b} &= \frac{1}{2} \Big( \frac{1}{N}\delta^{ab} + (d^{abc} +i f^{abc}) T^{c} \Big)\\
\text{Tr}(T^{a}T^{b}T^{c}) &= \frac{1}{4} (d^{abc} +i f^{abc})\\
%\iffalse
f^{acd}d^{bcd} &= 0
%\fi
\end{align*}
\eqref{boo}
\end{document}
Respuesta2
No es elegante, pero funciona....
El problema es que se pueden dividir ciertos entornos de visualización en varias páginas (por ejemplo, líneas múltiples, alineación), pero no alineados dentro de la ecuación. \allowdisplaybreaks
ayuda aquí, junto con align
y \notag
.
\documentclass[12pt,a4paper]{report}
\usepackage[left=2.5 cm,right=2.5 cm,top=3.5 cm,bottom=3.5 cm]{geometry}
\usepackage{amssymb,amsmath}
\usepackage{slashed,cancel}
\usepackage{hyperref}
\usepackage{setspace}
\usepackage{appendix}
\usepackage{color,colortbl}
\usepackage[table]{xcolor}
%%% footnote
\usepackage{fancyhdr}
\usepackage{changepage}
%%change head foot font
\fancyhf{}
\newcommand{\changefont}{\fontsize{7}{9}\selectfont} %% change font size in header
\renewcommand{\subsectionmark}[1]{\markright{\MakeUppercase{ \thesubsection\ #1}}} % header layout for subsection
\fancyhead[LE,RO]{\thepage}
\fancyhead[LO]{\color{gray}\changefont\slshape\rightmark}
\fancyhead[RE]{\leftmark}
%% for Bjornstrup
\usepackage[Bjornstrup]{fncychap}
\ChNumVar{\fontsize{76}{80}\usefont{OT1}{pzc}{m}{n}\selectfont}
\ChTitleUpperCase
\ChTitleVar{\LARGE\bf\centering}
\hypersetup{
colorlinks=true, %set true if you want colored links
linktoc=all, %set to all if you want both sections and subsections linked
linkcolor=blue, %choose some color if you want links to stand out
urlcolor=blue
}
\fancyhead[R]{ \fontsize{12}{12} \textbar\ {\bf \thepage} }
\pagestyle{fancy}
\doublespacing
\allowdisplaybreaks
\begin{document}
%% redefine page header
\begin{appendices}
\chapter{}
\section{This is A}
Below we present some important relations followed by the generators $(T_{ij}^{a})$ and structure constants $(f^{abc})$ of $SU(3)_{c}$.
\begin{align}
\text{Tr}(T^{a} T^{b}) &= \frac{1}{2} \delta^{ab}\notag\\
\text{Tr}(T^{a} T^{b} T^{c}) &= \frac{1}{4} (d^{abc} +i f^{abc})\notag\\
\text{Tr}(T^{a} T^{b} T^{a} T^{c}) &= -\frac{1}{4N} \delta^{bc}\notag\\
T^{a}_{ij}T^{a}_{kl} &= \frac{1}{2} \Big( \delta_{il}\delta_{jk} - \frac{1}{N} \delta_{ij}\delta_{kl} \Big)\notag\\
T^{a}_{ij}T^{a}_{jk} &= \frac{N^{2}-1}{2N} \delta_{ik}\notag\\
f^{abc} &= -2i \text{Tr}(T^{a} . [T^{b},T^{c}])\notag\\
f^{acd} f^{bcd} &= N \delta^{ab}\\
f^{ade}f^{bef}f^{cfd} &= \frac{N}{2} f^{abc}\notag\\
d^{abc} &= 2 \text{Tr}(T^{a} . [T^{b},T^{c}])\notag\\
\{T^{a}, T^{b} \} &= \frac{1}{N}\delta^{ab} +d^{abc} T^{c}\notag\\
T^{a}T^{b} &= \frac{1}{2} \Big( \frac{1}{N}\delta^{ab} + (d^{abc} +i f^{abc}) T^{c} \Big)\notag\\
\text{Tr}(T^{a}T^{b}T^{c}) &= \frac{1}{4} (d^{abc} +i f^{abc})\notag\\
%\iffalse
f^{acd}d^{bcd} &= 0\notag
%\fi
\end{align}
$d^{abc}$ is known as the symmetric structure constant and for QCD $N=3$.
\end{appendices}
\end{document}